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as in FOL or DLs



assume anonymous elements are present
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Conceptual Modeling problems solved?



no



satisfiability checking undecidable



syntactically restrict programs:
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I only unary and binary predicates
I no constants
I 3 rule types (unary, binary, free) with tree shape
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Satisfiability checking decidable



Motivation from the Hybrid knowledge viewpoint:



let’s look at DL-safeness



Student v Person

works(X ) ← not Student(X )



rule is not DL-safe:



works(X ) ← not Student(X )

Student is a DL-atom, thus X is not guarded by positive
non-DL atom



what can one do?



not a lot



Student v Person

works(X ) ← Person(X), not Student(X )



still not DL-safe
(Person(X ) is also a DL-atom)



Why DL-safeness?



Herbrand



avoid Herbrand and DL-safe



ai, undecidable again
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Decidable is nice, but what about actual reasoning?



this paper



I Tableau algorithm for Simple Conceptual Logic
Programs

I Prototype implementation in BProlog
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Why is this hard?



LP
DL

closed domain
open domain

minimal model
model

simple CoLPs: open domain, minimal model



Tableau algorithm for simple CoLPs
I DL-like Tableaux algorithm: build tree structure,

blocking

I Extra: Dependency graph for minimality checks
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check satisfiability of a:

r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

with f and g free, i.e., with rules

f (X , Y ) ∨ not f (X , Y ) ←
g(X , Y ) ∨ not g(X , Y ) ←



ε {au}

dependency graph G contains the corresponding atom a(ε)
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I Expand only nodes if ancestors have been fully
expanded

I Each label contains each unary (binary) predicate or its
negation (a saturation)
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⇒ Root node not saturated yet
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r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

cycle-free dependency graph:

f (ε, 1)

a(ε)b(1)

g(ε, 2)

b(2) b(ε)



a is satisfiable



I sound, complete, and terminating

I exptime
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BProlog implementation
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