
A Reasoner for Simple Conceptual
Logic Programs

Stijn Heymans Cristina Feier Thomas Eiter

Vienna University of Technology

25 October RR 2009



fail(X ) ← not study(X )
study(john) ←

LP
model
fail satisfiable?

Herbrand Universe {john}
{study(john)}
No

Desirable when Conceptually Modeling?



fail(X ) ← not study(X )
study(john) ←

LP
model
fail satisfiable?

Herbrand Universe {john}
{study(john)}
No

Desirable when Conceptually Modeling?



fail(X ) ← not study(X )
study(john) ←

LP
model
fail satisfiable?

Herbrand Universe {john}
{study(john)}
No

Desirable when Conceptually Modeling?



no



as in FOL or DLs



assume anonymous elements are present



fail(X ) ← not study(X )
study(john) ←

Open ASP
model
fail satisfiable?

Possible Universe {john, x}
{study(john), fail(x)}
Yes

Conceptual Modeling? Check!



fail(X ) ← not study(X )
study(john) ←

Open ASP
model
fail satisfiable?

Possible Universe {john, x}
{study(john), fail(x)}
Yes

Conceptual Modeling? Check!



Conceptual Modeling problems solved?



no



satisfiability checking undecidable



syntactically restrict programs:



Simple Conceptual Logic Programs

I only unary and binary predicates
I no constants
I 3 rule types (unary, binary, free) with tree shape
I cyclicity restriction



Simple Conceptual Logic Programs
I only unary and binary predicates

I no constants
I 3 rule types (unary, binary, free) with tree shape
I cyclicity restriction



Simple Conceptual Logic Programs
I only unary and binary predicates
I no constants

I 3 rule types (unary, binary, free) with tree shape
I cyclicity restriction



Simple Conceptual Logic Programs
I only unary and binary predicates
I no constants
I 3 rule types (unary, binary, free) with tree shape

I cyclicity restriction



Simple Conceptual Logic Programs
I only unary and binary predicates
I no constants
I 3 rule types (unary, binary, free) with tree shape
I cyclicity restriction



r1 : a(X ) ← b(X ), f (X , Y ), not a(Y )
r2 : b(X ) ← a(X )
r3 : f (X , Y ) ← g(X , Y ), b(Y )
r4 : g(X , Y ) ∨ not g(X , Y ) ←

a b

f g
*



r1 : a(X ) ← b(X ), f (X , Y ), not a(Y )
r2 : b(X ) ← a(X )
r3 : f (X , Y ) ← g(X , Y ), b(Y )
r4 : g(X , Y ) ∨ not g(X , Y ) ←

a b

f g
*



Satisfiability checking decidable



Motivation from the Hybrid knowledge viewpoint:



let’s look at DL-safeness



Student v Person

works(X ) ← not Student(X )



rule is not DL-safe:



works(X ) ← not Student(X )

Student is a DL-atom, thus X is not guarded by positive
non-DL atom



what can one do?



not a lot



Student v Person

works(X ) ← Person(X), not Student(X )



still not DL-safe
(Person(X ) is also a DL-atom)



Why DL-safeness?



Herbrand



avoid Herbrand and DL-safe



ai, undecidable again



⇒ simple Conceptual Logic Programs

I decidable (in combination with a translatable DL)
I not Herbrand
I not DL-safe



⇒ simple Conceptual Logic Programs
I decidable (in combination with a translatable DL)

I not Herbrand
I not DL-safe



⇒ simple Conceptual Logic Programs
I decidable (in combination with a translatable DL)
I not Herbrand

I not DL-safe



⇒ simple Conceptual Logic Programs
I decidable (in combination with a translatable DL)
I not Herbrand
I not DL-safe



s/DL-safe rules/simple Conceptual Logic Programs



Student v Person

works(X ) ← not Student(X )

I not DL-safe
I simple Conceptual Logic Program



Student v Person

works(X ) ← not Student(X )

I not DL-safe

I simple Conceptual Logic Program



Student v Person

works(X ) ← not Student(X )

I not DL-safe
I simple Conceptual Logic Program



Decidable is nice, but what about actual reasoning?



this paper



I Tableau algorithm for Simple Conceptual Logic
Programs

I Prototype implementation in BProlog



I Tableau algorithm for Simple Conceptual Logic
Programs

I Prototype implementation in BProlog



Why is this hard?



LP
DL

closed domain
open domain

minimal model
model

simple CoLPs: open domain, minimal model



Tableau algorithm for simple CoLPs
I DL-like Tableaux algorithm: build tree structure,

blocking

I Extra: Dependency graph for minimality checks



Tableau algorithm for simple CoLPs
I DL-like Tableaux algorithm: build tree structure,

blocking
I Extra: Dependency graph for minimality checks



check satisfiability of a:

r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

with f and g free, i.e., with rules

f (X , Y ) ∨ not f (X , Y ) ←
g(X , Y ) ∨ not g(X , Y ) ←



ε {au}

dependency graph G contains the corresponding atom a(ε)



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f u}

2

{not f u, gu}
{ae}

{bu} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae}

{bu} {bu}



I Expand only nodes if ancestors have been fully
expanded

I Each label contains each unary (binary) predicate or its
negation (a saturation)



I Expand only nodes if ancestors have been fully
expanded

I Each label contains each unary (binary) predicate or its
negation (a saturation)



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae}

{bu} {bu}

⇒ Root node not saturated yet



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae , bu}

{bu} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae , be}

{bu, not cu,r3} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae , be , not cu,r3}

{bu, not cu,r3} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{f e}

2

{not f e , g e}
{ae , be , not ce}

{bu, not cu,r3} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{not g e , f e}

2

{not f e , g e}
{ae , be , not ce}

{bu, not cu,r3} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

ε

1

{not g e , f e}

2

{not f e , g e}

{ae , be , not ce}

{bu, not cu,r3} {bu}



r1 : a(X ) ← f (X , Y1 ), b(Y1 ), not f (X , Y2 ), g(X , Y2 ), b(Y2 )
r2 : b(X ) ← f (X , Y ), not c(Y )
r3 : c(X ) ← not b(X )

cycle-free dependency graph:

f (ε, 1)

a(ε)b(1)

g(ε, 2)

b(2) b(ε)



a is satisfiable



I sound, complete, and terminating

I exptime



I sound, complete, and terminating
I exptime



BProlog implementation



http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/

http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/

