
Answer sets in a fuzzy equilibrium logic

1 Dept. Applied Math. and Comp. Science, Ghent University, Belgium
2 Dept. of Computer Science, Vrije Universiteit Brussel, Belgium
3 Institute of Technology, University of Washington, WA, USA

Steven Schockaert1, Jeroen Janssen2, Dirk Vermeir2, Martine De Cock1,3

Answer set programming

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, }

1

Answer set programming

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, }

1

Unique answer set

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r3: bbq ← hungry
r4: sunshine ←
r5: hungry ←

1

Answer set programming

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, }

1

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r3: bbq ← hungry
r4: sunshine ←
r5: hungry ←

1

Unique answer set

Fuzzy answer set programming

Use degrees of applicability to model continuous phenomena
in a logical setting

(no vagueness or uncertainty)

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

Fuzzy answer set programming

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

accept the head at least to the degree
to which the body is true

Rule:

Logical connectives: generalize using appropriate [0,1]2-
[0,1] mappings

Fuzzy answer set programming

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

Unique answer set

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

Fuzzy answer set programming

Unique answer set

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

a∧b = min(a,b)

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

Fuzzy answer set programming

Unique answer set

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

1

a∧b = max(0,a+b-1)

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

1

Motivation

Unfounded sets

Gelfond-Lifschitz reduct

Equilibrium logic

Fuzzy unfounded sets

Fuzzy Gelfond-Lifschitz reduct

Fuzzy equilibrium logic

Many equivalent definitions of answer sets

Equilibrium logic

A valuation V assigns a truth value to atoms in two
worlds: h(ere) and t(here)

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

V (w, a) =






−1 false

0 undecided

1 true

1

The there-world is a refinement of the here-world

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

V (w, a) =






−1 false

0 undecided

1 true

V (h, a) %= 0⇒ V (t, a) = V (h, a)

1

Equilibrium logic4 Steven Schockaert et al.

is obtained from the valuation of atoms as follows (w ∈ {h, t}, α and β are
formulas):

V (w,¬α) = −V (w, α)
V (w, α ∧ β) = min(V (w, α), V (w, β))
V (w, α ∨ β) = max(V (w, α), V (w, β))

V (w, α → β) =






1 if ∀w′ ≥ w . (V (w′, α) = 1)⇒ (V (w′, β) = 1)
−1 if V (w, α) = 1 and V (w, β) = −1
0 otherwise

V (w, notα) =






1 if ∀w′ ≥ w . V (w′, α) < 1
−1 if V (w, α) = 1
0 otherwise

The valuation V is called an (N2-) model of a set of formulas Θ if for each
α ∈ Θ, it holds that V (h, α) = V (t, α) = 1. Let Lit be the set of all literals, i.e.
Lit = A ∪ {¬a|a ∈ A}. For a valuation V , let Vh and Vt be the set of literals
that are true in worlds h and t:

Vh = {l ∈ Lit|V (h, l) = 1} Vt = {l ∈ Lit|V (t, l) = 1}

A model is called h-minimal if its here world is as little committing as possible,
given its particular there world.

Definition 1. [23] A model V of a set of formulas Θ is h-minimal if for every
other model V ′ of Θ it holds that either Vt *= V ′

t or Vh ⊆ V ′
h.

Note that minimality refers to the number of literals that are verified by a
valuation, and not the number of atoms as for minimality in classical logics.
Equilibrium models are h-minimal models whose valuation in h and t coincides.

Definition 2. [23] A h-minimal model V of a set of formulas Θ is an equilib-
rium model if Vh = Vt.

A set of formulas P is called a logic program when every formula α in P is of
the form

l1 ∧ ... ∧ lm ∧ not lm+1 ∧ ... ∧ not ln → ln+1 ∨ ... ∨ ls

where every li is either an atom or a strongly negated atom, i.e. li ∈ Lit. As the
following proposition reveals, for logic programs the equilibrium models coincide
with the answer sets. As common in logic programming, we will often reverse
the direction of the implication arrow and write α ← β for β → α.

Proposition 1. [23] Let P be a logic program and S a consistent set of literals
(i.e. a and ¬a cannot be both in S, for any atom in A). Then S is an answer
set of P iff there is an equilibrium model V of P such that S = Vt.

A valuation is extended to arbitrary formulas (h≤h, h≤t, t≤t)

Intuition: here-world = what is supported by available rules
there-world = what can be assumed

Equilibrium logic

4 Steven Schockaert et al.

is obtained from the valuation of atoms as follows (w ∈ {h, t}, α and β are
formulas):

V (w,¬α) = −V (w, α)
V (w, α ∧ β) = min(V (w, α), V (w, β))
V (w, α ∨ β) = max(V (w, α), V (w, β))

V (w, α → β) =






1 if ∀w′ ≥ w . (V (w′, α) = 1)⇒ (V (w′, β) = 1)
−1 if V (w, α) = 1 and V (w, β) = −1
0 otherwise

V (w, notα) =






1 if ∀w′ ≥ w . V (w′, α) < 1
−1 if V (w, α) = 1
0 otherwise

The valuation V is called an (N2-) model of a set of formulas Θ if for each
α ∈ Θ, it holds that V (h, α) = V (t, α) = 1. Let Lit be the set of all literals, i.e.
Lit = A ∪ {¬a|a ∈ A}. For a valuation V , let Vh and Vt be the set of literals
that are true in worlds h and t:

Vh = {l ∈ Lit|V (h, l) = 1} Vt = {l ∈ Lit|V (t, l) = 1}

A model is called h-minimal if its here world is as little committing as possible,
given its particular there world.

Definition 1. [23] A model V of a set of formulas Θ is h-minimal if for every
other model V ′ of Θ it holds that either Vt *= V ′

t or Vh ⊆ V ′
h.

Note that minimality refers to the number of literals that are verified by a
valuation, and not the number of atoms as for minimality in classical logics.
Equilibrium models are h-minimal models whose valuation in h and t coincides.

Definition 2. [23] A h-minimal model V of a set of formulas Θ is an equilib-
rium model if Vh = Vt.

A set of formulas P is called a logic program when every formula α in P is of
the form

l1 ∧ ... ∧ lm ∧ not lm+1 ∧ ... ∧ not ln → ln+1 ∨ ... ∨ ls

where every li is either an atom or a strongly negated atom, i.e. li ∈ Lit. As the
following proposition reveals, for logic programs the equilibrium models coincide
with the answer sets. As common in logic programming, we will often reverse
the direction of the implication arrow and write α ← β for β → α.

Proposition 1. [23] Let P be a logic program and S a consistent set of literals
(i.e. a and ¬a cannot be both in S, for any atom in A). Then S is an answer
set of P iff there is an equilibrium model V of P such that S = Vt.

h-minimal model
V is h-minimal if Vh is minimal over all models V’ for

which V’t = Vt

equilibrium model

V is an equilibrium model if V is h-minimal and Vh = Vt

model
V is a model of a set of formulas, if it makes all

formulas true in both worlds.

Fuzzy equilibrium logic

A valuation V assigns a truth value to atoms in two
worlds: h(ere) and t(here)

The there-world is a refinement of the here-world

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

V (w, a) =






−1 false

0 undecided

1 true

V (h, a) %= 0⇒ V (t, a) = V (h, a)

V (w, a) =

{
[a, a] true to degree a

[a, b] undecided (but between a and b)

1

r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ←
r5: hungry ←

A1 = {sunshine, hungry, bbq}
r1: bad weather ← rainy
r2: bad weather ← ∼ sunshine
r3: bbq ← ∼ bad weather ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

A1 = {sunshine0.7, hungry0.7, bbq0.5, bad weather0.2, rainy0.1}

A1 = {sunshine0.7, hungry0.7, bbq0.7, bad weather0.2, rainy0.1}
r1: bad weather ← rainy
r2: bad weather ← (1− 0.8)
r3: bbq ← (1− 0.2) ∧ hungry
r4: sunshine ← 0.8
r5: hungry ← 0.7
r6: rainy ← 0.1

V (w, a) =






−1 false

0 undecided

1 true

V (h, a) %= 0⇒ V (t, a) = V (h, a)

V (w, a) =

{
[a, a] true to degree a

[a, b] undecided (but between a and b)

V (t, a) ⊆ V (h, a)

1

Equilibrium logic

A valuation is extended to arbitrary formulas (h≤h, h≤t, t≤t)

Intuition: here-world = what is supported by available rules
there-world = what can be assumed

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

2

Equilibrium logic

h-minimal model

V is h-minimal if Vh is minimal if for all models V’ either

equilibrium model

V is an equilibrium model if V is h-minimal
V(h,a)=V(t,a) for all atoms a

8 Steven Schockaert et al.

A valuation V is a (fuzzy N2-) model of a set of fuzzy formulas Θ if for every
α in Θ, V −(h, α) = 1, which also implies V +(h, α) = V −(t, α) = V +(t, α) = 1.
Analogous to models in crisp equilibrium logic, fuzzy equilibrium models are
models which are in some sense minimal, and which assign the same value to
literals in both worlds.

Definition 6. A fuzzy N2-model V of a set of fuzzy formulas Θ is h-minimal
if for every other fuzzy N2-model V ′ of Θ, it holds that either

1. V (t, a) != V ′(t, a) for some a in A; or
2. V ′(h, a) ⊆ V (h, a) for all a in A.

Note that h-minimal fuzzy N2-models are those that are least committing, i.e.
those whose valuation in the here-world corresponds to the largest possible in-
terval.

Definition 7. A h-minimal fuzzy N2-model V of a set of fuzzy formulas Θ is
a fuzzy equilibrium model if V (h, a) = V (t, a) for all a in A.

Analogous to ρ-answer sets in FASP, we define the notion of fuzzy equilibrium
ρ-model. First we define a (fuzzy N2-) ρ-model of a set of fuzzy formulas Θ as
a valuation V satisfying V −(h, α) ≥ ρ(α) for every α in Θ.

Definition 8. Let ρ be a mapping from fuzzy formulas to [0, 1]. A fuzzy N2-ρ-
model of a set of fuzzy formulas Θ is h-minimal if for every other fuzzy N2-ρ-
model of Θ one of the two conditions from Definition 6 are satisfied. A h-minimal
fuzzy N2-ρ-model V is a fuzzy equilibrium ρ-model if V (h, a) = V (t, a) for all a
in A.

Example 3. Consider again the set of fuzzy formulas P from Example 2. A fuzzy
N2-valuation V is a fuzzy N2-model of P iff

(V −(h, a←l not b) = 1) ∧ (V −(h, b←l not a) = 1)

⇔ min(V −(h, a)←l V −(h, not b), V −(t, a)←l V −(t, not b)) = 1

∧min(V −(h, b)←l V −(h, not a), V −(t, b)←l V −(t, not a)) = 1

⇔ V −(h, a) ≥ V −(h, not b) ∧ V −(t, a) ≥ V −(t, not b)

∧ V −(h, b) ≥ V −(h, not a) ∧ V −(t, b) ≥ V −(t, not a)

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(t, a) ≥ 1− V −(t, b)

∧ V −(h, b) ≥ 1− V −(t, a) ∧ V −(t, b) ≥ 1− V −(t, a)

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(h, b) ≥ 1− V −(t, a)

We find that for every λ in [0, 1], the fuzzy N2-valuation V defined by V (t, a) =
V (h, a) = [λ, 1] and V (t, b) = V (h, b) = [1 − λ, 1] is a fuzzy equilibrium model.
Note that the fuzzy equilibrium models essentially correspond to the answer sets
from Example 2. In Propositions 3 and 4 below, we will clarify this connection.

Connection with existing approaches

Unfounded sets

Gelfond-Lifschitz reduct

Equilibrium logic

Fuzzy unfounded sets

Fuzzy Gelfond-Lifschitz reduct

Fuzzy equilibrium logic

Connection with existing approaches

Classical equilibrium logic

When the syntax is restricted to what can be expressed
in classical equilibrium logic, the “fuzzy” equilibrium
models coincide with the “classical” equilibrium models
when conjunction, disjunction and implication is
modeled using the minimum, maximum and Kleene-
Dienes implicator

Connection with existing approaches

Gelfond-Lifschitz fuzzy ASP

When the syntax is restricted to what can be expressed
in fuzzy ASP definitions based on generalizing the
Gelfond-Lifschitz reduct, the equilibrium models
coincide with the answer sets

Complexity

Checking whether a given set of formulas ϴ in fuzzy
equilibrium logic has an equilibrium model is complete

Checking whether the truth value of a given atom is
contained in a given interval [a,b] in some equilibrium
model of ϴ is complete

Checking whether the truth value of a given atom is
contained in a given interval [a,b] in all equilibrium
models of ϴ is complete

Lecture Notes in Computer Science 11

∑
a p(a−h)−

∑
a p(a+

h) can be found in NP. Clearly V is h-minimal iff
∑

a p(a−h)−∑
a p(a+

h) =
∑

a V −(t, a) −
∑

a V +(t, a). Recall that ΣP
2 is the set of problems

that can be solved in NP with an NP oracle, i.e. ΣP
2 = NPNP, while ΠP

2 is
the set of problems whose complement is in ΣP

2 . The preceding discussion then
easily leads to the following results.

Proposition 5. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is in ΣP

2 .

Proposition 6. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is in ΣP

2 .

Proposition 7. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy equilib-
rium models V of Θ is in ΠP

2 .

Hence, the main reasoning tasks are in the same complexity class as their coun-
terparts in (disjunctive) answer set programming. We can also establish the
following hardness results.

Proposition 8. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is ΣP

2 -hard.

Proposition 9. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is ΣP

2 -hard.

Proposition 10. Let Θ be a set of fuzzy formulas. If [µ, λ] %= [0, 1], the problem
of deciding whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy
equilibrium models V of Θ is ΠP

2 -hard.

Note that the above discussion can be generalized from the "Lukasiewicz con-
nectives to any operator whose semantics can be defined in terms of a mixed
integer program. This even holds when strict inequalities are allowed, hence we
may also use operators such as the Gödel and Rescher implicators →g and →rs,
defined by

u→g v =

{
1 if u ≤ v

v otherwise
u→rs v =

{
1 if u ≤ v

0 otherwise

for all u and v in [0, 1].

4 Example

As an illustration of how fuzzy equilibrium logic can be used in the context of
declarative problem solving, we present a technique to find strong Nash equilib-
ria, a problem which is known to be ΣP

2 -complete [10]. Nash equilibria are one

Lecture Notes in Computer Science 11

∑
a p(a−h)−

∑
a p(a+

h) can be found in NP. Clearly V is h-minimal iff
∑

a p(a−h)−∑
a p(a+

h) =
∑

a V −(t, a) −
∑

a V +(t, a). Recall that ΣP
2 is the set of problems

that can be solved in NP with an NP oracle, i.e. ΣP
2 = NPNP, while ΠP

2 is
the set of problems whose complement is in ΣP

2 . The preceding discussion then
easily leads to the following results.

Proposition 5. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is in ΣP

2 .

Proposition 6. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is in ΣP

2 .

Proposition 7. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy equilib-
rium models V of Θ is in ΠP

2 .

Hence, the main reasoning tasks are in the same complexity class as their coun-
terparts in (disjunctive) answer set programming. We can also establish the
following hardness results.

Proposition 8. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is ΣP

2 -hard.

Proposition 9. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is ΣP

2 -hard.

Proposition 10. Let Θ be a set of fuzzy formulas. If [µ, λ] %= [0, 1], the problem
of deciding whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy
equilibrium models V of Θ is ΠP

2 -hard.

Note that the above discussion can be generalized from the "Lukasiewicz con-
nectives to any operator whose semantics can be defined in terms of a mixed
integer program. This even holds when strict inequalities are allowed, hence we
may also use operators such as the Gödel and Rescher implicators →g and →rs,
defined by

u→g v =

{
1 if u ≤ v

v otherwise
u→rs v =

{
1 if u ≤ v

0 otherwise

for all u and v in [0, 1].

4 Example

As an illustration of how fuzzy equilibrium logic can be used in the context of
declarative problem solving, we present a technique to find strong Nash equilib-
ria, a problem which is known to be ΣP

2 -complete [10]. Nash equilibria are one

Lecture Notes in Computer Science 11

∑
a p(a−h)−

∑
a p(a+

h) can be found in NP. Clearly V is h-minimal iff
∑

a p(a−h)−∑
a p(a+

h) =
∑

a V −(t, a) −
∑

a V +(t, a). Recall that ΣP
2 is the set of problems

that can be solved in NP with an NP oracle, i.e. ΣP
2 = NPNP, while ΠP

2 is
the set of problems whose complement is in ΣP

2 . The preceding discussion then
easily leads to the following results.

Proposition 5. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is in ΣP

2 .

Proposition 6. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is in ΣP

2 .

Proposition 7. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy equilib-
rium models V of Θ is in ΠP

2 .

Hence, the main reasoning tasks are in the same complexity class as their coun-
terparts in (disjunctive) answer set programming. We can also establish the
following hardness results.

Proposition 8. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is ΣP

2 -hard.

Proposition 9. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is ΣP

2 -hard.

Proposition 10. Let Θ be a set of fuzzy formulas. If [µ, λ] %= [0, 1], the problem
of deciding whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ A, in all fuzzy
equilibrium models V of Θ is ΠP

2 -hard.

Note that the above discussion can be generalized from the "Lukasiewicz con-
nectives to any operator whose semantics can be defined in terms of a mixed
integer program. This even holds when strict inequalities are allowed, hence we
may also use operators such as the Gödel and Rescher implicators →g and →rs,
defined by

u→g v =

{
1 if u ≤ v

v otherwise
u→rs v =

{
1 if u ≤ v

0 otherwise

for all u and v in [0, 1].

4 Example

As an illustration of how fuzzy equilibrium logic can be used in the context of
declarative problem solving, we present a technique to find strong Nash equilib-
ria, a problem which is known to be ΣP

2 -complete [10]. Nash equilibria are one

Example: strong pure Nash equilibria

s1 s2 s3 s4 s5 s6

S

u1 u2 u3 u4 u5 u6

Example: strong pure Nash equilibria

s1 s2 s’ s4 s5 s6

S

u1 u2 u’ u4 u5 u6

Example: strong pure Nash equilibria

s1 s2 s’ s’’ s’’’ s6

S

u1 u2 u’ u’’ u’’’ u6

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Guess a strong Nash equilibrium

‣The strategy of player i is represented by a value ai

from [0,1]

‣Any strategy may be chosen by any player

‣Any valuation in which V(t,ai) = V(h,ai) = [x,x] for some
x in [0,1] is an equilibrium model

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Guess a coalition

‣ci simulates a “crisp” atom, indicating wether player i
is part of the coalition

‣For players in the coalition, a new strategy di is
guessed

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Guess a coalition

‣ ei = ai for players outside the coalition

‣ ei = di for players in the coalition

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Check whether the new strategies improve the utility of
player i

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Check whether the new strategies improve the utilities of
all players in the coalition

Example: strong pure Nash equilibria

V (w,¬α) = [1− V +(w, α), 1− V −(w, α)]

V (w, α⊗ β) = [V −(w, α)⊗ V −(w, β), V +(w, α)⊗ V +(w, β)]

V (w, α⊕ β) = [V −(w, α)⊕ V −(w, β), V +(w, α)⊕ V +(w, β)]

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)]

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)]

V (h, notα) = [1− V −(t, α), 1− V −(h, α)]

V (t, notα) = [1− V −(t, α), 1− V −(t, α)]

ai ⊕l ¬ai

c−i ⊕m c+
i

d−i ⊕l d+
i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i)

e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+
i)

wi ←l (Ui(e
+
1 , ..., e+

n ; e−1 , ..., e−n)←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

d−i ←l w

d+
i ←l w

c−i ←l w

c+
i ←l w

wi ←l w

0←l not w

2

Concluding remarks

‣We defined fuzzy equilibrium logic as a generalization of
- Equilibrium logic

- Fuzzy answer set programming

‣Complexity is the same as for classical equilibrium logic

‣Provides a convenient way to encode problems over
continuous domains, which are at the second level of
the polynomial hierarchy

‣Future work: implementation using bi-level mixed integer
programming

‣Future work: look at theoretical benefits (e.g. checking
strong equivalence)

