
Belief Logic Programming with 
Cyclic Dependencies

3rd International Conference on Web Reasoning and Rule Systems

Hui Wan

Stony Brook University, New York



Uncertainty in Rule-based KBs

• Formalisms for representing uncertainty

– Probabilities

– Fuzzy sets

– Belief functions

• Our approach:  based on belief functions 

RR 2009 2"Belief Logic Programming with Cyclic Dependencies"  Hui Wan



Belief Concept in Everyday Life

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 3

Degrees of belief, not probabilities.

These are not random events.

– “Based on the tests, the doctor is  60%  sure that Tim has cancer.”

– “Look, the ground is wet, I can say with   0.7   certainty that it rained 
last night.”

– “Based on the evidence, we believe with the confidence of  0.99   that 
O.J. Simpson committed the murder.”



Motivation:
Evidence Combination in Rule-based KBs

• What is the belief in  a?

a :- b.
a :- c /\ e.
b :- c /\ d.

0.5      c.
0.8      d.
0.6      e.

Φ(x,y) = x+y-xy combination function

Φ(0.3,0.4) = 0.58

• But inferences for  a are correlated so should not be combined outright.
– Use combination function “max”?  

- No entailment between the two pieces of evidence.
– The belief in  a should be  < 0.58,  and > 0.4.  - How much?

• Things become even more complicated when rules are uncertain.

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 4

a

b

c

0.58

0.5

0.4

d
0.8

e
0.6

0.40.3



• Goal
– Theory for combining evidence from sources that 

might be correlated

• Prior work
– Does not account for structural correlation through 

rules (as in the example)

• Our prior work: Belief LP (LPNMR09, SUM09)
– solves this problem, but no ground recursion is 

allowed

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 5



Syntax

BodyHeadwv   :   ],[ 

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 6

Conjunction of literals, 

e.g., cbXp )(

belief factor, 0 ≤v≤w≤1

e.g.,      [0.2, 0.4]

an atom

e.g.,      p(X)

fd :- a 

e b :- d 

 ca :- b 







     [0.8,1]

  [0.3,0.9]

  [0.6,0.8]

Our prior work: 

no cyclic dependencies among atoms



Meaning of Rule 

• If Body holds, then this rule supports

– X to the degree of v

– to the degree of 1- w

• The semantics ensures that 

if only one rule supports  X

Similar intuition holds for multiple rules 

(with appropriate modifications)

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 7

X

w
BodyBel

BodyXBel
v

BodyBel

BodyXBel






1

)(

)(

)(

)(

BodyXwv      :],[



Combination Functions

• Combination function:

Φ({ [v1 , w1], …, [vn , wn] }) = [v, w]

– Φ({ [v, w] }) = [v, w] , Φ({}) = [0, 1]

• Each atom X has an associated combo function ΦX

– ΦX decides how to combine beliefs in X

– Different ΦX for different application domains

– Examples:  Dempster’s rule, max, …

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 8

multiset of belief factors combined belief factor



Semantics: Basics

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 9

notion example

Belief function bel

bel(F) = I |= F m(I)

F:  a boolean formula
|=: entailment in Lukasiewicz 3-valued logic

I1(a)=t,  I1(b)=t,  I1(c)=t

I2(a)=t,  I2(b)=t,  I2(c)=f

I3(a)=t,  I3(b)=t,  I3(c)=u

…

I27(a)=u,  I27(b)=u,  I27(c)=u

BP={a, b, c}Herbrand base BP

Truth valuation I:  BP → {t, f, u}

tval(P) :  the set of all truth 
valuations over BP

Support function m:  tval(P) → [0,1]

s.t.    

m(I1)= 0.5

m(I3)= 0.5

m(Ik)= 0, if k≠1, k≠ 3

bel(a)=m(I1)+ m(I2)+ m(I3)= 1

…

 


)(
1)(

PtvalI
Im

Plays the role of interpretation in classical LP.



Semantics

• Model of a belief logic program: 

– a belief function 

• Properties

– Non-monotonic

– Strong relation to paraconsistent reasoning and 
defeasible reasoning

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 10



Declarative Semantics
• The set of rules that support X and fire in I

PI(X) ={R | R  P, X  Head(R),  I |= Body(R)}

• sP(I,X): the support in I for X
– If PI(X)={}, 

– If PI(X)= {R1,…,Rk},
let [v,w] be the result of applying ΦX to the belief factors of R1,…,Rk

• The support in I for P as a whole

• Model for P:
A belief function bel:   F →

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 11

 

 if       

if       -1 

 if             

uXIvw

fXIw

tXIv

I,XsP









)(

)(

)(

 
fXItXI

uXI
I,XsP






)()(

)(

 or  if        0 

 if         1 







PBX

PP XIsIm ),()(






FIBTvalI

P

P

Im
|),(

)(

a boolean formula



This Paper

• Method to deal with arbitrary belief logic 
programs, including the cyclic ones

– transformation-based

– has good properties

– circular feedback is not problematic

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 12



Cyclic Program

r1 [0.8, 1] disease(p3) :- test_pos(p3).

r2 [0.8, 1] disease(p4) :- test_pos(p4).

r3 [0.6, 1] disease(p3) :- contact(p3, p4) /\ disease(p4).

r4 [0.6, 1] disease(p4) :- contact(p4, p3) /\ disease(p3).

r5 [1, 1] test_pos(p3).

r6 [1, 1] test_pos(p4).

r7 [1, 1] contact(p3, p4).

r8 [1, 1] contact(p4, p3).

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 13

[0.8, 1] disease(X) :- test_pos(X).

//  Positive test result supports the diagnosis of a person having the disease. 

[0.6, 1] disease(X) :- contact(X, Y) /\ disease(Y).

//  The disease is contagious.
[1, 1] test_pos(p3). [1, 1] test_pos(p4).

[1, 1] contact(p3, p4). [1, 1] contact(p4, p3).



RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 14

disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

Dependency Graph

atom-node

rule-node

belief factor of rule 



Atom Cliques

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 15

disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

Two atoms are in the same clique 
iff they depend on each other.



Partial Proof DAG (pp-DAG)

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 16

disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

disease(p3) 

r1

[0.8,1]

r2

disease(p4) 

[0.8,1]

disease(p3) 

r2

disease(p4) 

r3

[0.6,1]

[0.8,1]

disease(p3) 

r1

disease(p4) 

r4

[0.8,1]

[0.6,1]

G2

G4

G3

G1

• Corresponds to an SLD derivation of the query.
• No cycles allowed.
• Within the clique.



Child pp-DAG

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 17

G3 is a child pp-DAG of G2.

G1 is a child pp-DAG of G4.
disease(p3) 

r1

[0.8,1]

G1

disease(p3) 

r2

disease(p4) 

r3

[0.6,1]

[0.8,1]

G2

r2

disease(p4) 

[0.8,1]

G3

disease(p3) 

r1

disease(p4) 

r4

[0.8,1]

[0.6,1]

G4



Declyclification
• For every rule whose head atom is in a cycle

where A0,…An are in the same clique, and no atom in Conj is in this clique.

– Replace it with

– For every list of pp-DAGs, G0,…,Gn , such that

• Ai is Gi ’s root, and R is in G0

• G1,…, Gn are children of G0

add rules

• Intuition:
– The belief in AG is precisely that part of the belief in A, which is justified by the 

derivation that corresponds to G. 

– The belief in R is the belief in the rule body being derived without any loop influence. 

– The belief in A0 is the combination of the support to A0 from all the rules with A0 in 
head.

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 18

.-:][ 110 ConjA AA  A A v,wR nkk   

. R A v,w -:][ 0

.-:]1[1

.-:][

11

110

11

110

ConjA AA  AR  ,

ConjA AA  A A v,w

nkk

nkk

G

n

G

k

G

k

G

G

n

G

k

G

k

GG



















RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 19

r1 [0.8, 1]   disease(p3) :- test_pos(p3).

r2 [0.8, 1]   disease(p4) :- test_pos(p4).

r3 [0.6, 1]   disease(p3) :- contact(p3, p4) /\ disease(p4).

r4 [0.6, 1]   disease(p4) :- contact(p4, p3) /\ disease(p3).

...

G1, G2 contribute to disease(p3). 
G3, G4 contribute to disease(p4). 
G3 is a child pp-DAG of G2. 
G1 is a child pp-DAG of G4.

[0.8, 1] disease(p3) :- r1.

[1, 1] r1 :- test_pos(p3).

[0.8, 1] disease(p4) :- r2.

[1, 1] r2 :- test_pos(p4).

[0.6, 1] disease(p3) :- r3.

[1, 1] r3 :- contact(p3, p4) /\ diseaseG2(p4).

[0.6, 1] disease(p4) :- r4.

[1, 1] r4 :- contact(p4, p3) /\ diseaseG1(p3).

[0.8, 1] diseaseG1(p3) :- test_pos(p3).

[0.8, 1] diseaseG2(p4) :- test_pos(p4).

[0.6, 1] diseaseG3(p3) :- contact(p3, p4) /\ diseaseG2(p4).

[0.6, 1] diseaseG4(p4)  :- contact(p4, p3) /\ diseaseG1(p3).

…

P

acyclic(P)

bel(disease(p3))=0.896

bel(disease(p4))=0.896



• The model of a general program P is the 
model of acyclic(P).

• Properties

– Backward compatible with acyclic semantics

– Circular feedback is not problematic

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 20



• Transformational semantics 

– based on a global decyclification

• Fixpoint semantics 

– based on a sequence of local decyclifications

• Equivalent results

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 21



A step in the fixpoint computation:

– Consider: the rules with head in an atom clique C

– Already known: the support to truth valuation   I for the atoms which 
C depends on

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 22

f1 f2 d e

t t t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I)=0.25

I

m_c:  tval({a,b})→ [0,1]

{m’(I+I’_k) = m(I)*m_c(I’_k) | I’_k is in  tval ({a,b})}

[0.8, 1]     a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]     a  :- b /\ f1 . 

[0.6, 1]     b  :- a /\ f2 .

[1, 1]        d . 

[1, 1] e . 

[0.5, 0.5]  f1 . 

[0.5, 1] f2 :- f1 . 

[0.8, 1] a   :- r1 .

[1, 1] r1 .

[0.8, 1] b   :- r2 .

[1, 1] r2 .

[0.6, 1] a   :- r3.

[1, 1] r3 :- bG2.

[0.6, 1] b   :- r4.

[1, 1] r4 :- aG1.

[0.8, 1] aG1 .

[0.8, 1] bG2 .

[0.6, 1] aG3 :- bG2.

[0.6, 1] bG4 :- aG1.



RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 23

BP   can be divided into cliques C1 ,…, Cl such that Ck only depend on C1…Ck-1,   1 < k ≤ l 

Sk = C1 U… U Ck 

: tval(Sk) → [0,1]

……

S0={}       Sn=BP

0Sm
1Sm

2Sm
nSm

kSm

Model -- the belief function based on         

Fixpoint semantics coincides with the transformational semantics

nSm

Fixpoint Semantics



Modular Acyclicity

• In every step, under every I being supported,  
there is no cycle formed by the rules involved.

– No decyclification needed!

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 24

f1 f2 d e

t f t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I1)=0.5

I1

[0.8, 1]     a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]     a  :- b /\ f1 . 

[0.6, 1]     b  :- a /\ f2 .

[1, 1]        d . 

[1, 1] e . 

[0.5, 0.5]  f1 . 

[0, 0] f2 :- f1 . 

f1 f2 d e

f u t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I2)=0.5

I2



Conclusion
• Belief  LP:   a novel framework for reasoning with 

uncertainty in the presence of correlated evidence.
– Declarative semantics

– Operational semantics

– Query answering algorithm

• This paper

– extends the semantics to arbitrary belief logic programs

• Future work: 

– extend the query answering algorithm to arbitrary belief 
logic programs

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 25



RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 26

Thank you!

Questions?


