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Uncertainty in Rule-based KBs

• Formalisms for representing uncertainty

– Probabilities

– Fuzzy sets

– Belief functions

• Our approach:  based on belief functions 
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Belief Concept in Everyday Life
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Degrees of belief, not probabilities.

These are not random events.

– “Based on the tests, the doctor is  60%  sure that Tim has cancer.”

– “Look, the ground is wet, I can say with   0.7   certainty that it rained 
last night.”

– “Based on the evidence, we believe with the confidence of  0.99   that 
O.J. Simpson committed the murder.”



Motivation:
Evidence Combination in Rule-based KBs

• What is the belief in  a?

a :- b.
a :- c /\ e.
b :- c /\ d.

0.5      c.
0.8      d.
0.6      e.

Φ(x,y) = x+y-xy combination function

Φ(0.3,0.4) = 0.58

• But inferences for  a are correlated so should not be combined outright.
– Use combination function “max”?  

- No entailment between the two pieces of evidence.
– The belief in  a should be  < 0.58,  and > 0.4.  - How much?

• Things become even more complicated when rules are uncertain.
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• Goal
– Theory for combining evidence from sources that 

might be correlated

• Prior work
– Does not account for structural correlation through 

rules (as in the example)

• Our prior work: Belief LP (LPNMR09, SUM09)
– solves this problem, but no ground recursion is 

allowed
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Syntax

BodyHeadwv   :   ],[ 

RR 2009 "Belief Logic Programming with Cyclic Dependencies"  Hui Wan 6

Conjunction of literals, 

e.g., cbXp )(

belief factor, 0 ≤v≤w≤1

e.g.,      [0.2, 0.4]

an atom

e.g.,      p(X)

fd :- a 

e b :- d 

 ca :- b 







     [0.8,1]

  [0.3,0.9]

  [0.6,0.8]

Our prior work: 

no cyclic dependencies among atoms



Meaning of Rule 

• If Body holds, then this rule supports

– X to the degree of v

– to the degree of 1- w

• The semantics ensures that 

if only one rule supports  X

Similar intuition holds for multiple rules 

(with appropriate modifications)
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Combination Functions

• Combination function:

Φ({ [v1 , w1], …, [vn , wn] }) = [v, w]

– Φ({ [v, w] }) = [v, w] , Φ({}) = [0, 1]

• Each atom X has an associated combo function ΦX

– ΦX decides how to combine beliefs in X

– Different ΦX for different application domains

– Examples:  Dempster’s rule, max, …
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multiset of belief factors combined belief factor



Semantics: Basics
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notion example

Belief function bel

bel(F) = I |= F m(I)

F:  a boolean formula
|=: entailment in Lukasiewicz 3-valued logic

I1(a)=t,  I1(b)=t,  I1(c)=t

I2(a)=t,  I2(b)=t,  I2(c)=f

I3(a)=t,  I3(b)=t,  I3(c)=u

…

I27(a)=u,  I27(b)=u,  I27(c)=u

BP={a, b, c}Herbrand base BP

Truth valuation I:  BP → {t, f, u}

tval(P) :  the set of all truth 
valuations over BP

Support function m:  tval(P) → [0,1]

s.t.    

m(I1)= 0.5

m(I3)= 0.5

m(Ik)= 0, if k≠1, k≠ 3

bel(a)=m(I1)+ m(I2)+ m(I3)= 1

…

 


)(
1)(

PtvalI
Im

Plays the role of interpretation in classical LP.



Semantics

• Model of a belief logic program: 

– a belief function 

• Properties

– Non-monotonic

– Strong relation to paraconsistent reasoning and 
defeasible reasoning
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Declarative Semantics
• The set of rules that support X and fire in I

PI(X) ={R | R  P, X  Head(R),  I |= Body(R)}

• sP(I,X): the support in I for X
– If PI(X)={}, 

– If PI(X)= {R1,…,Rk},
let [v,w] be the result of applying ΦX to the belief factors of R1,…,Rk

• The support in I for P as a whole

• Model for P:
A belief function bel:   F →
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a boolean formula



This Paper

• Method to deal with arbitrary belief logic 
programs, including the cyclic ones

– transformation-based

– has good properties

– circular feedback is not problematic
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Cyclic Program

r1 [0.8, 1] disease(p3) :- test_pos(p3).

r2 [0.8, 1] disease(p4) :- test_pos(p4).

r3 [0.6, 1] disease(p3) :- contact(p3, p4) /\ disease(p4).

r4 [0.6, 1] disease(p4) :- contact(p4, p3) /\ disease(p3).

r5 [1, 1] test_pos(p3).

r6 [1, 1] test_pos(p4).

r7 [1, 1] contact(p3, p4).

r8 [1, 1] contact(p4, p3).
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[0.8, 1] disease(X) :- test_pos(X).

//  Positive test result supports the diagnosis of a person having the disease. 

[0.6, 1] disease(X) :- contact(X, Y) /\ disease(Y).

//  The disease is contagious.
[1, 1] test_pos(p3). [1, 1] test_pos(p4).

[1, 1] contact(p3, p4). [1, 1] contact(p4, p3).
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disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

Dependency Graph

atom-node

rule-node

belief factor of rule 



Atom Cliques
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disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

Two atoms are in the same clique 
iff they depend on each other.



Partial Proof DAG (pp-DAG)
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disease(p3) 

r1

test_pos(p3) contact(p3,p4) 

contact(p4,p3) test_pos(p4) 

r2

disease(p4) 

r7

r8 r6

r5

r4

r3

[0.8,1]

[1,1]

[1,1]

[1,1]

[1,1]

[0.6,1]

[0.6,1] [0.8,1]

disease(p3) 

r1

[0.8,1]

r2

disease(p4) 

[0.8,1]

disease(p3) 

r2

disease(p4) 

r3

[0.6,1]

[0.8,1]

disease(p3) 

r1

disease(p4) 

r4

[0.8,1]

[0.6,1]

G2

G4

G3

G1

• Corresponds to an SLD derivation of the query.
• No cycles allowed.
• Within the clique.



Child pp-DAG
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G3 is a child pp-DAG of G2.

G1 is a child pp-DAG of G4.
disease(p3) 

r1

[0.8,1]

G1

disease(p3) 

r2

disease(p4) 

r3

[0.6,1]

[0.8,1]

G2

r2

disease(p4) 

[0.8,1]

G3

disease(p3) 

r1

disease(p4) 

r4

[0.8,1]

[0.6,1]

G4



Declyclification
• For every rule whose head atom is in a cycle

where A0,…An are in the same clique, and no atom in Conj is in this clique.

– Replace it with

– For every list of pp-DAGs, G0,…,Gn , such that

• Ai is Gi ’s root, and R is in G0

• G1,…, Gn are children of G0

add rules

• Intuition:
– The belief in AG is precisely that part of the belief in A, which is justified by the 

derivation that corresponds to G. 

– The belief in R is the belief in the rule body being derived without any loop influence. 

– The belief in A0 is the combination of the support to A0 from all the rules with A0 in 
head.
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r1 [0.8, 1]   disease(p3) :- test_pos(p3).

r2 [0.8, 1]   disease(p4) :- test_pos(p4).

r3 [0.6, 1]   disease(p3) :- contact(p3, p4) /\ disease(p4).

r4 [0.6, 1]   disease(p4) :- contact(p4, p3) /\ disease(p3).

...

G1, G2 contribute to disease(p3). 
G3, G4 contribute to disease(p4). 
G3 is a child pp-DAG of G2. 
G1 is a child pp-DAG of G4.

[0.8, 1] disease(p3) :- r1.

[1, 1] r1 :- test_pos(p3).

[0.8, 1] disease(p4) :- r2.

[1, 1] r2 :- test_pos(p4).

[0.6, 1] disease(p3) :- r3.

[1, 1] r3 :- contact(p3, p4) /\ diseaseG2(p4).

[0.6, 1] disease(p4) :- r4.

[1, 1] r4 :- contact(p4, p3) /\ diseaseG1(p3).

[0.8, 1] diseaseG1(p3) :- test_pos(p3).

[0.8, 1] diseaseG2(p4) :- test_pos(p4).

[0.6, 1] diseaseG3(p3) :- contact(p3, p4) /\ diseaseG2(p4).

[0.6, 1] diseaseG4(p4)  :- contact(p4, p3) /\ diseaseG1(p3).

…

P

acyclic(P)

bel(disease(p3))=0.896

bel(disease(p4))=0.896



• The model of a general program P is the 
model of acyclic(P).

• Properties

– Backward compatible with acyclic semantics

– Circular feedback is not problematic
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• Transformational semantics 

– based on a global decyclification

• Fixpoint semantics 

– based on a sequence of local decyclifications

• Equivalent results
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A step in the fixpoint computation:

– Consider: the rules with head in an atom clique C

– Already known: the support to truth valuation   I for the atoms which 
C depends on
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f1 f2 d e

t t t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I)=0.25

I

m_c:  tval({a,b})→ [0,1]

{m’(I+I’_k) = m(I)*m_c(I’_k) | I’_k is in  tval ({a,b})}

[0.8, 1]     a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]     a  :- b /\ f1 . 

[0.6, 1]     b  :- a /\ f2 .

[1, 1]        d . 

[1, 1] e . 

[0.5, 0.5]  f1 . 

[0.5, 1] f2 :- f1 . 

[0.8, 1] a   :- r1 .

[1, 1] r1 .

[0.8, 1] b   :- r2 .

[1, 1] r2 .

[0.6, 1] a   :- r3.

[1, 1] r3 :- bG2.

[0.6, 1] b   :- r4.

[1, 1] r4 :- aG1.

[0.8, 1] aG1 .

[0.8, 1] bG2 .

[0.6, 1] aG3 :- bG2.

[0.6, 1] bG4 :- aG1.
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BP   can be divided into cliques C1 ,…, Cl such that Ck only depend on C1…Ck-1,   1 < k ≤ l 

Sk = C1 U… U Ck 

: tval(Sk) → [0,1]

……

S0={}       Sn=BP

0Sm
1Sm

2Sm
nSm

kSm

Model -- the belief function based on         

Fixpoint semantics coincides with the transformational semantics

nSm

Fixpoint Semantics



Modular Acyclicity

• In every step, under every I being supported,  
there is no cycle formed by the rules involved.

– No decyclification needed!
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f1 f2 d e

t f t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I1)=0.5

I1

[0.8, 1]     a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]     a  :- b /\ f1 . 

[0.6, 1]     b  :- a /\ f2 .

[1, 1]        d . 

[1, 1] e . 

[0.5, 0.5]  f1 . 

[0, 0] f2 :- f1 . 

f1 f2 d e

f u t t

[0.8, 1]  a  :- d . 

[0.8, 1] b :- e . 

[0.6, 1]  a  :- b /\ f1 . 

[0.6, 1]  b  :- a /\ f2 .m(I2)=0.5

I2



Conclusion
• Belief  LP:   a novel framework for reasoning with 

uncertainty in the presence of correlated evidence.
– Declarative semantics

– Operational semantics

– Query answering algorithm

• This paper

– extends the semantics to arbitrary belief logic programs

• Future work: 

– extend the query answering algorithm to arbitrary belief 
logic programs
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Thank you!

Questions?


