Belief Logic Programming with Cyclic Dependencies

3rd International Conference on Web Reasoning and Rule Systems

Hui Wan

Stony Brook University, New York

Uncertainty in Rule-based KBs

- Formalisms for representing uncertainty
 - Probabilities
 - Fuzzy sets
 - Belief functions

• *Our approach*: based on belief functions

Belief Concept in Everyday Life

- "Based on the tests, the doctor is 60% sure that Tim has cancer."
- "Look, the ground is wet, I can say with 0.7 certainty that it rained last night."
- "Based on the evidence, we believe with the confidence of 0.99 that
 O.J. Simpson committed the murder."

These are not random events. Degrees of belief, not probabilities.

Motivation: Evidence Combination in Rule-based KBs

• What is the belief in a?

a:-b. $a:-c \land e.$ $b:-c \land d.$ $0.5 \quad c.$ $0.8 \quad d.$ $0.6 \quad e.$ $\Phi(x,y) = x+y-xy$ — combination function

 $\Phi(0.3, 0.4) = 0.58$

- But inferences for *a* are *correlated* so should not be combined outright.
 - Use combination function "max"?
 - No entailment between the two pieces of evidence.
 - The belief in a should be < 0.58, and > 0.4. How much?
- Things become even more complicated when rules are uncertain.

Goal

 Theory for combining evidence from sources that might be *correlated*

• Prior work

- Does not account for structural correlation through rules (as in the example)
- Our prior work: Belief LP (LPNMR09, SUM09)
 - solves this problem, but no ground recursion is allowed

Syntax

Our prior work:

no cyclic dependencies among atoms

[0.6,0.8] $a :- b \land c$ [0.3,0.9] $b :- d \land e$ [0.8,1] $d :- a \land f$

Meaning of Rule

[v,w] X :- Body

- If *Body* holds, then this rule supports
 - -X to the degree of v
 - -X to the degree of 1- w
- The semantics ensures that if only one rule supports X

 $\frac{Bel(X \land Body)}{Bel(Body)} = v \qquad \frac{Bel(\overline{X} \land Body)}{Bel(Body)} = 1 - w$

Similar intuition holds for multiple rules (with appropriate modifications)

Combination Functions

Combination function:

$$\Phi(\{ [v_1, w_1], ..., [v_n, w_n] \}) = [v, w]$$

multiset of belief factors
combined belief factor

$$- \Phi(\{ [v, w] \}) = [v, w], \Phi(\{\}) = [0, 1]$$

- Each atom X has an associated combo function Φ_X
 - Φ_X decides how to combine beliefs in X
 - Different Φ_X for different application domains
 - Examples: Dempster's rule, max, ...

Semantics: Basics

notion		example	
Herbrand base B _P		$B_{\boldsymbol{P}} = \{a, b, c\}$	
Truth valuation <i>I</i> : $B_P \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$	 	$I_1(a) = \mathbf{t}, \ I_1(b) = \mathbf{t}, \ I_1(c) = \mathbf{t}$	
		$I_2(a) = \mathbf{t}, \ I_2(b) = \mathbf{t}, \ I_2(c) = \mathbf{f}$	
<i>tval</i> (P): the set of all truth valuations over B_P	- - - - -	$I_3(a) = \mathbf{t}, \ I_3(b) = \mathbf{t}, \ I_3(c) = \mathbf{u}$	
	- - - - - -	$I_{27}(a) = \mathbf{u}, \ I_{27}(b) = \mathbf{u}, \ I_{27}(c) = \mathbf{u}$	
Support function <i>m</i> : $tval(\mathbf{P}) \rightarrow [0,1]$ s.t. $\sum_{I \in tval(\mathbf{P})} m(I) = 1$	 	$m(I_1) = 0.5$	
	 	$m(I_3) = 0.5$	
		$m(I_k)=0$, if $k\neq 1$, $k\neq 3$	
Belief function bel			
$bel(F) = \sum_{I \models F} m(I)$		ays the role of interpretation in classical LF)
<i>F</i> : a boolean formula			; ;

1

Semantics

Model of a belief logic program:
 – a belief function

- Properties
 - Non-monotonic
 - Strong relation to paraconsistent reasoning and defeasible reasoning

Declarative Semantics

- The set of rules that support X and fire in I $P_I(X) = \{R \mid R \in P, X \in \text{Head}(R), I \models \text{Body}(R)\}$
- $s_P(I,X)$: the support in *I* for *X*
- If $P_{I}(X) = \{\},\$

$$s_P(I,X) = \begin{cases} 1 & \text{if } I(X) = u \\ 0 & \text{if } I(X) = t \text{ or } I(X) = f \end{cases}$$

let [v,w] be the result of applying Φ_X to the belief factors of $R_1, ..., R_k$

$$s_{p}(I,X) = \begin{pmatrix} v & \text{if } I(X) = t \\ 1 - w & \text{if } I(X) = f \\ w - v & \text{if } I(X) = u \end{cases}$$

- The support in *I* for *P* as a whole $\stackrel{\wedge}{m_P}(I) = \prod_{X \in B_P} s_P(I, X)$
- Model for **P**: A belief function bel: $F \to \sum_{I \in Tval \ (B_P), I \models F} \stackrel{\wedge}{m_P}(I)$

a boolean formula

This Paper

- Method to deal with arbitrary belief logic programs, including the cyclic ones
 - transformation-based
 - has good properties
 - circular feedback is not problematic

Cyclic Program

[0.8, 1]	disease(X) :- test_pos(2	X).		
// Positive test result supports the diagnosis of a person having the disease.				
[0.6, 1]	disease(X) :- contact(X	$(Y, Y) \land disease(Y)$	΄).	
// The a	disease is contagious.			
[1, 1]	<i>test_pos</i> (p3).	[1, 1]	<i>test_pos</i> (p4).	
[1, 1]	contact(p3, p4).	[1, 1]	contact(p4, p3).	

r1 [0.8,	1] disease	(p3) :- <i>test_pos</i> (p3).
----------	------------	-------------------------------

- r2 [0.8, 1] *disease*(p4) :- *test_pos*(p4).
- r3 [0.6, 1] $disease(p3) := contact(p3, p4) \land disease(p4)$.
- r4 [0.6, 1] $disease(p4) := contact(p4, p3) \land disease(p3)$.
- r5 [1, 1] *test_pos*(p3).
- r6 [1, 1] *test_pos*(p4).
- r7 [1, 1] *contact*(p3, p4).
- **r8** [1, 1] *contact*(p4, p3).

Dependency Graph

Atom Cliques

Partial Proof DAG (pp-DAG)

- Corresponds to an SLD derivation of the query.
- No cycles allowed.
- Within the clique.

"Belief Logic Programming with Cyclic Dependencies" Hui Wan

G3

Child pp-DAG

"Belief Logic Programming with Cyclic Dependencies" Hui Wan

Declyclification

• For every rule whose head atom is in a cycle

 $R \qquad [v,w] \quad A_0 := A_1 \land \ldots \land A_k \land \overline{A_{k+1}} \land \ldots \land \overline{A_n} \land Conj.$

where $A_0, ..., A_n$ are in the same clique, and no atom in *Conj* is in this clique.

- Replace it with $[v,w] A_0 :- R$.
- For every list of pp-DAGs, G_0, \ldots, G_n , such that
 - A_i is G_i 's root, and R is in G_0
 - $G_1, ..., G_n$ are children of G_0

add rules

$$\begin{bmatrix} v,w \end{bmatrix} \quad A_0^{G_0} \quad := A_1^{G_1} \wedge \dots \wedge A_k^{G_k} \wedge \overline{A_{k+1}}^{G_{k+1}} \wedge \dots \wedge \overline{A_n}^{G_n} \wedge Conj.$$

$$\begin{bmatrix} 1,1 \end{bmatrix} \quad R \quad := A_1^{G_1} \wedge \dots \wedge A_k^{G_k} \wedge \overline{A_{k+1}}^{G_{k+1}} \wedge \dots \wedge \overline{A_n}^{G_n} \wedge Conj.$$

- Intuition:
 - The belief in A^G is precisely that part of the belief in A, which is justified by the derivation that corresponds to G.
 - The belief in *R* is the belief in the rule body being derived without any loop influence.
 - The belief in A_0 is the combination of the support to A_0 from all the rules with A_0 in head.

Ρ

- $disease(p3) := test_pos(p3).$ [0.8, 1]rl
- [0.8, 1] *disease*(*p4*) :- *test_pos*(*p4*). r^2
- [0.6, 1] $disease(p3) := contact(p3, p4) \land disease(p4)$. *r3*
- [0.6, 1] $disease(p4) := contact(p4, p3) \land disease(p3)$. r4

acyclic(P)

• • •

[0.8, 1]	disease(p3) := r1.
[1, 1]	$r1$:- $test_pos(p3)$.
[0.8, 1]	disease(p4) := r2.
[1, 1]	$r2$:- $test_pos(p4)$.
[0.6, 1]	disease(p3) := r3.
[1, 1]	r3 :- contact(p3, p4) \land disease ^{G2} (p4).
[0.6, 1]	disease(p4) := r4.
[1, 1]	r4 :- contact(p4, p3) \land disease ^{G1} (p3).
[0.8, 1]	$disease^{GI}(p3)$:- $test_pos(p3)$.
[0.8, 1]	$disease^{G2}(p4)$:- $test_pos(p4)$.
[0.6, 1]	disease ^{G3} (p3) :- contact(p3, p4) \land disease ^{G2} (p4).
[0.6, 1]	disease ^{G4} (p4) :- contact(p4, p3) \land disease ^{G1} (p3).

bel(disease(p3))=0.896 *bel(disease(p4))*=0.896

G1, G2 contribute to disease(p3). G3, G4 contribute to disease(p4). G3 is a child pp-DAG of G2. G1 is a child pp-DAG of G4.

. . .

The model of a general program P is the model of acyclic(P).

- Properties
 - Backward compatible with acyclic semantics
 - Circular feedback is not problematic

- Transformational semantics
 - based on a global decyclification

- Fixpoint semantics
 - based on a sequence of local decyclifications

• Equivalent results

A step in the fixpoint computation:

- Consider: the rules with head in an atom clique C
- Already known: the support to truth valuation *I* for the atoms which *C* depends on

Fixpoint Semantics

 B_P can be divided into cliques C_1 ,..., C_l such that C_k only depend on $C_1 \dots C_{k-1}$, $1 < k \le 1$ $S_k = C_1 \cup \dots \cup C_k$

Model -- the belief function based on m_{S_n}

Fixpoint semantics coincides with the transformational semantics

 m_{S_k} : $tval(S_k) \rightarrow [0,1]$

Modular Acyclicity

• In every step, under every *I* being supported, there is no cycle formed by the rules involved.

– No decyclification needed!

"Belief Logic Programming with Cyclic Dependencies" Hui Wan

Conclusion

- Belief LP: a novel framework for reasoning with uncertainty in the presence of correlated evidence.
 - Declarative semantics
 - Operational semantics
 - Query answering algorithm
- This paper
 - extends the semantics to arbitrary belief logic programs
- Future work:
 - extend the query answering algorithm to arbitrary belief logic programs

Thank you!

Questions?