
Scalable Web Reasoning using
Logic Programming Techniques

Gergely Lukácsy1 Péter Szeredi2

1Digital Enterprise Research Institution (DERI)
Galway, Ireland

2Budapest University of Technology and Economics (BUTE)
Budapest, Hungary

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 1 / 21

Introduction

Goals
an expressive DL reasoning framework that solves instance retrieval
problems when large amounts of underlying data are expected

data in external database/triple store

distributed and scalable execution

In this presentation
we provide extensions of the DL reasoning system DLog that transforms
the DL reasoning task into the execution of a Logic Program

main result: initial design of DLog Abstract Machine (DAM) - a virtual
machine for the execution of DLog programs

secondary result: an outline of a new parallel architecture for the DLog
system that is built around the DAM idea

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 2 / 21

Preliminaries: the DLog framework

Part I: the DLog framework

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 3 / 21

Preliminaries: the DLog framework

The DLog framework

The DLog system in a nutshell
DLog is a resolution based Description Logic SHIQ ABox reasoning system
implemented in Prolog/C++

DLog creates a Prolog program from a DL knowledge base

the queries in DLog are focused, reasoning consists of two phases

DLog is remarkably faster than its competitors, for a lot of benchmarks

DLog is available to download (http://www.dlog-reasoner.org)

The generic transformation scheme
Input: arbitrary set of DL clauses (TBox → FOL clauses ⊆ DL-clauses)

Output: a Prolog program equivalent with the input wrt. instance retrieval

Idea: (1) two-fold specialisation of Prolog Technology Theorem Proving
(PTTP) - an approach to build a FOL theorem prover on top of Prolog; (2)
applying prolog-level optimisations on the output

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 4 / 21

http://www.dlog-reasoner.org

Preliminaries: the DLog framework

Code generated from: ∃hasSpouse.Man ⊑ Woman

woman(X, L0) :- member(A, L0),
A == woman(X), !, fail. %loop elim.

woman(X, L0) :- member(not_woman(X), L0), !. %ancestor res.
woman(X, L0) :- L1 = [woman(X)|L0], %new anc.list

hasSpouse(X, Y), man(Y, L1). %original clause
woman(X, _) :- abox:woman(X). %ABox facts

not_man(Y, L0) :- L1 = [not_man(Y)|L0], %contrapositive
hasSpouse(X, Y), not_woman(X, L1).

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 5 / 21

Preliminaries: the DLog framework

Optimizations - decomposition

Basic idea
split a body into independent components

make sure that the truth value of each component is only calculated once

Example
„someone is happy if she has a child having both a clever and a pretty child”

Happy(A) :-
hasChild(A, B),
(hasChild(B, C),

Clever(C) -> true −→ first component
),
(hasChild(B, D),

Pretty(D) -> true −→ second component
).

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 6 / 21

Preliminaries: the DLog framework

Optimizations - superset

Basic idea
determine for each predicate P a set of instances S for which I(P) ⊆ S
holds (I(P) denotes the set of solutions of P)

reduce the initial instance retrieval problem to a finite number of
deterministic instance checks

The generic superset schema
choice_Concept(A, AL) :-

(nonvar(A) -> deterministic_Concept(A, AL)
; member_of_superset_Concept(A),

deterministic_Concept(A, AL)
).

% A is a specific instance
deterministic_Concept(A, AL) :- ..., !.
...

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 7 / 21

The DLog Abstract Machine

Part II: the DLog Abstract Machine

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 8 / 21

The DLog Abstract Machine Architecture

The DLog Abstract Machine (DAM)

Role of the DAM

DL KB DLog
Prolog code

DAM code

Standard
Prolog
Engine

DAM
Engine

Properties of DLog programs
1 predicates can only be unary or binary → single argument register
2 there are no compound data structures → unification is trivial
3 concept predicate invocations are ground and deterministic →

no need for deep backtracking
4 2+3 → no need for the heap and the trail stack
5 arguments are always instance names → no need for cell tagging

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 9 / 21

The DLog Abstract Machine Architecture

Architecture of DAM

Data structures and registers
Control stack: fixed sized frames for local environment/return address
information; predicates receive arguments implicitly

Choice point stack: deep backtracking for roles; communication with DB

Bactrackable hash table (stack)

Global registers: V (return value), PC (program counter), T (current
control frame)

Control structures
conjunction, disjunction and loops

we assume that each predicate contains exactly one of these (can be
achieved by introducing auxiliary predicates)

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 10 / 21

The DLog Abstract Machine Architecture

Data structure internals
Control stack

the return address of the predicate (virtual register R);

the actual instance (URI) being checked (virtual register A);

the ancestor list, represented as an index (virtual register H);

a pointer to the corresponding choice stack frame (virtual register P).

Choice point stack
a counter used in implementing number restrictions (virtual register C);

a handle used for interfacing with the triple store;

a buffer for instances returned by the triple store.

R A H P

.

C handle

instances230x03 i 2 3

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 11 / 21

The DLog Abstract Machine Instruction set

Instruction set of DAM

Instruction Arguments Description
put_ancestor N extend the ancestor list in the local frame by the

term with name N and argument A
check_ancestor N succeeds if the ancestor list contains a term with

name N and argument A
fail_on_loop N fails if a loop occurred, i.e. the term with name N

and argument A is present on the ancestor list
call P invokes procedure P in a new control frame
execute P invokes procedure P in the existing control frame
exit_with S returns from a procedure with status S, continues

execution according to register R
exit_on_failure – returns from procedure if V = FAILURE
exit_on_success – returns from procedure if V = SUCCESS
jump L jumps to label L
has_n_successors R, n checks if instance A has at least n R successors;

creates a choice point; loads the first choice to A
count_and_exit – decreases counter C if the previous instruction

was successful; returns with success if C is 0
next_choice – loads the next solution from the choice stack to

A
abox_query Q returns success if A is a solution of query Q

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 12 / 21

The DLog Abstract Machine Translation process

Translating DLog programs to DAM code
Conjunctions/Disjunctions

g1(X), ..., gk(X) g1(X) ; ...; gk(X)

call g1 call g1

exit_on_failure exit_on_success
... ...
call gk−1 call gk−1

exit_on_failure exit_on_success
execute gk execute gk

Number restriction (≥ nRC)

has_n_successors R n −→ fails if A has not enough successors
label(1):
call C −→ returns with success or failure
count_and_exit −→ if success: C--, returns success if C= 0
next_choice −→ set A to next successor, return fail if no more
jump 1

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 13 / 21

The DLog Abstract Machine Translation process

Example translation
∃hasSpouse.Man ⊑ Woman

predicate(woman): −→ A contains the instance to check
fail_on_loop woman
check_ancestor not_woman
call aux_1 −→ Original clause
exit_on_success
execute aux_2 −→ Direct ABox call

predicate(aux_1):
put_ancestor woman −→ uses A, sets H
has_n_successors hasSpouse 1

label(1):
call man, −→ Invokes another predicate
count_and_exit
next_choice
jump 1

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 14 / 21

The DLog Abstract Machine Translation process

Operational semantics of the instructions - 1

put_ancestor n: −→ inserts term n(A) into the hash table
H = add_to_hash(A, n, H);

check_ancestor n: −→ checks if term n(A) is in the hash table
if (hash_search(A, n, H)) exit_with SUCCESS;

fail_on_loop n: −→ checks if term n(A) is in the hash table
if (hash_search(A, n, H)) exit_with FAILURE;

call p:
T++; A = previous->A; H = previous->H; R = PC + 1;
PC = &p; −→ invokes procedure in new frame

execute p:
PC = &p; −→ invokes procedure in the current frame

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 15 / 21

The DLog Abstract Machine Translation process

Operational semantics of the instructions - 2

has_n_successors r n: −→ loads successors of A to the choice stack
if (!cardinality_check(A, r, n)) exit_with FAILURE;
A = create_choice(A, r);

count_and_exit: −→ counts and exists if counter reaches zero
if (V == SUCCESS) P->C--;
if (P->C == 0) exit_with SUCCESS

next_choice: −→ sets the next solution instance to A
if (!has_choice()) exit_with FAILURE;
A = next_choice();

abox_query q: −→ executes a(complex) database query
V = abox_query(A, q);

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 16 / 21

Parallel architecture for DLog

Part III: parallel architecture for DLog

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 17 / 21

Parallel architecture for DLog

Parallelisation possibilities

Fine-grained parallelism
Idea: simplify LP parallelisation techniques to DLog programs → PADAM

AND parallelism works well with decomposition

OR paralellism involves speculative work

Coarse-grained parallelism
Idea: introduce parallelism at the DLog architecture-level

the superset expression is evaluated in parallel

the instances in the superset are checked in parallel

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 18 / 21

Parallel architecture for DLog

The architecture of the Parallel DLog system.

Triple Store

Conjunctive query

Terminology Box (TBox)

Factual triples (ABox)

Input knowledge base

Superset builder

Transformer

DL

translator

DAM

translator

Query

optimiser

Dynamic

Linker

PADAM

engine
PADAM

engine

PADAM

engine

PADAM

engine

...

1

2

3

4

6

7

5

Answer

8

DAM

programs

A

B

C

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 19 / 21

Parallel architecture for DLog

Conclusion

Summary
we introduced the Prolog based DLog reasoning system and provided
two extensions to improve its scalability

we presented the initial design of the DLog Abstract Machine, including
its architecture, instruction set and operational semantics

we outline a new parallel architecture for the DLog system that introduces
parallelism at many levels of the execution

Future work
implementation and performance evaluation

refinement of the PADAM execution model

designing the details of the communication between DLog and the
underlying database/triple store

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 20 / 21

Parallel architecture for DLog

Recent DLog related publications

Gergely Lukácsy, Péter Szeredi.
Efficient description logic reasoning in Prolog: the DLog system.
Theory and Practice of Logic Programming (TPLP). 09(03):343-414, May, 2009.
Cambridge University Press, UK.

Gergely Lukácsy, Péter Szeredi, and Balázs Kádár.
Prolog based description logic reasoning.
In Proceedings of the 24th International Conference on Logic Programming
(ICLP 2008), pp. 455-469, Udine, Italy, December 2008.

Zsolt Zombori
Efficient Two-Phase Data Reasoning for Description Logics.
In Proceedings of the IFIP 20th World Computer Congress
(IFIP AI 2008), pp. 393-402, Milano, Italy, September 2008.

Zsolt Zombori and Gergely Lukácsy.
A resolution based description logic calculus.
In Proceedings of the 22nd International Workshop on Description Logics
(DL 2009), volume 477 of CEUR, Oxford, UK, July 2009.

G. Lukácsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 21 / 21

	Preliminaries: the DLog framework
	The DLog Abstract Machine
	
	
	

	Parallel architecture for DLog

