Scalable Web Reasoning using
Logic Programming Techniques

Gergely Lukacsy! Péter Szeredi?

1Digital Enterprise Research Institution (DERI)
Galway, Ireland

2Budapest University of Technology and Economics (BUTE)
Budapest, Hungary

E MUEGYETEM 1782

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 1/21

|
Introduction

Goals

@ an expressive DL reasoning framework that solves instance retrieval
problems when large amounts of underlying data are expected

@ data in external database/triple store
@ distributed and scalable execution

In this presentation
@ we provide extensions of the DL reasoning system DLog that transforms
the DL reasoning task into the execution of a Logic Program

@ main result; initial design of DLog Abstract Machine (DAM) - a virtual
machine for the execution of DLog programs

@ secondary result: an outline of a new parallel architecture for the DLog
system that is built around the DAM idea

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 2/21

Preliminaries: the DLog framework

Part I: the DLog framework

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming

Preliminaries: the DLog framework

The DLog framework

The DLog system in a nutshell

DLog is a resolution based Description Logic SHZ Q ABox reasoning system
implemented in Prolog/C++

@ DLog creates a Prolog program from a DL knowledge base

@ the queries in DLog are focused, reasoning consists of two phases

@ DLog is remarkably faster than its competitors, for a lot of benchmarks
@ DLog is available to download (ht t p: / / ww. dl og- r easoner . or g)

The generic transformation scheme

@ Input: arbitrary set of DL clauses (TBox — FOL clauses C DL-clauses)
@ Output: a Prolog program equivalent with the input wrt. instance retrieval

@ Idea: (1) two-fold specialisation of Prolog Technology Theorem Proving
(PTTP) - an approach to build a FOL theorem prover on top of Prolog; (2)
applying prolog-level optimisations on the output

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming

RR Conference, Chantilly, USA, 2009 4/21

http://www.dlog-reasoner.org

Preliminaries: the DLog framework

Code generated from: 3hasSpouse.Man C Woman

worman(X, LO) :- menber(A, LO),

A == woman(X), !, fail.
woman(X, LO) :- nmenber(not_worman(X), LO), !.
worman(X, LO) :- L1 = [woman(X)]| LO],

hasSpouse(X, Y), man(Y, L1).
wonman(X, _) - abox: woman(X) .
not _man(Y, LO) :- L1 = [not_man(Y)]|LO],

hasSpouse(X, Y), not_woman(X, L1).

% oop elim
%ancest or res.
%mew anc. | i st
%ori gi nal cl ause
%\Box facts

Ycontrapositive

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 5/21

Optimizations - decomposition

Basic idea
@ split a body into independent components
@ make sure that the truth value of each component is only calculated once

W

Example
~someone is happy if she has a child having both a clever and a pretty child”
Happy(A) : -

hasChi | d(A, B),
(hasChi l d(B, O,

Clever(C -> true — first component
) y
(hasChi | d(B, D),

Pretty(D) -> true — second componer
).

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 6/21

Optimizations - superset

Basic idea

@ determine for each predicate P a set of instances S for which I(P) C S
holds (I(P) denotes the set of solutions of P)

@ reduce the initial instance retrieval problem to a finite number of
deterministic instance checks

The generic superset schema
choi ce_Concept (A, AL) :-
(nonvar (A) -> determ ni stic_Concept (A, AL)
; menber _of superset Concept (A),
determ ni stic_Concept (A, AL)
).

% A is a specific instance
determ ni stic_Concept (A, AL) :- ..., I.

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 7121

The DLog Abstract Machine

Part Il: the DLog Abstract Machine

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming

The DLog Abstract Machine (DAM)

Role of the DAM

Standard
Prolog
Engine

DL KB DLog

Properties of DLog programs

© predicates can only be unary or binary — single argument register
@ there are no compound data structures — unification is trivial

© concept predicate invocations are ground and deterministic —
no need for deep backtracking

© 2+3 — no need for the heap and the trail stack
@ arguments are always instance names — no need for cell tagging

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 9/21

Architecture of DAM

Data structures and registers

@ Control stack: fixed sized frames for local environment/return address
information; predicates receive arguments implicitly

@ Choice point stack: deep backtracking for roles; communication with DB

@ Bactrackable hash table (stack)

@ Global registers: V (return value), PC (program counter), T (current
control frame)

Control structures
@ conjunction, disjunction and loops

@ we assume that each predicate contains exactly one of these (can be
achieved by introducing auxiliary predicates)

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 10/21

The DLog Abstract Machine Architecture

Data structure internals

Control stack
@ the return address of the predicate (virtual register R);

@ the actual instance (URI) being checked (virtual register A);
@ the ancestor list, represented as an index (virtual register H);
@ a pointer to the corresponding choice stack frame (virtual register P).

Choice point stack

@ a counter used in implementing number restrictions (virtual register C);

@ a handle used for interfacing with the triple store;
@ a buffer for instances returned by the triple store.

R A H P C handle

0x03! i | 2 | 3 123

instancesé

%

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 11/21

Instruction set of DAM

Instruction Arguments Description

put _ancest or N extend the ancestor list in the local frame by the
term with name N and argument A

check_ancest or N succeeds if the ancestor list contains a term with
name N and argument A

fail_on_Il oop N fails if a loop occurred, i.e. the term with name N
and argument A is present on the ancestor list

cal | P invokes procedure P in a new control frame

execute P invokes procedure P in the existing control frame

exit_wth S returns from a procedure with status S, continues
execution according to register R

exit_on_failure - returns from procedure if V = FAILURE

exit_on_success - returns from procedure if V = SUCCESS

junmp L jumps to label L

has_n_successors R, n checks if instance A has at least n R successors;
creates a choice point; loads the first choice to A

count _and_exi t - decreases counter C if the previous instruction
was successful; returns with success if C is 0

next _choi ce - loads the next solution from the choice stack to
A

abox_query Q returns success if A is a solution of query Q

G. Lukécsy, P. Szeredi (DERI/BUTE)

Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009

12/21

The DLog Abstract Machine Translation process

Translating DLog programs to DAM code
Conjunctions/Disjunctions

91(X), ..., (X g91(X) 5 ... 9k(X)
call g; call g;
exit_on_failure exit_on_success
call gx_1 call gx_1
exit_on_failure exit_on_success
execut e gk execut e gk

Number restriction (> nRC)

has_n_successors R n — fails if A has not enough successors
| abel (1):

call C — returns with success or failure

count _and exit — if success C--, returns success if €0
next _choi ce — set A to next successorreturn fail if no more
junp 1

V.

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 13/21

The DLog Abstract Machine Translation process

Example translation
JhasSpouse.Man C Woman

pr edi cat e(worman) : — A contains the instance to check
fail _on_|l oop wonman
check_ancest or not _wonan

call aux_1 — Original clause
exit_on_success
execute aux_2 — Direct ABox call

predi cate(aux_1):

put _ancestor woman — uses A sets H
has_n_successors hasSpouse 1

| abel (1):
call man, — Invokes another predicate

count _and_exit
next choi ce

jump 1

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 14/21

Operational semantics of the instructions - 1

put _ancestor n: — inserts term (A) into the hash table
H = add_to_hash(A, n, H);

check_ancestor n: — checks if term (A) is in the hash table
i f (hash_search(A, n, H)) exit_w th SUCCESS,;

fail _on_loop n: — checks if term (A) is in the hash table
i f (hash_search(A, n, H)) exit_wth FAILURE

call p:

T++; A = previous->A; H = previous->H, R = PC + 1,

PC = &p; — invokes procedure in new frame
execute p:

PC = &p; — invokes procedure in the current frame

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 15/21

Operational semantics of the instructions - 2

has_n_successors r n:. — loads successors of A to the choice st
if (!cardinality _check(A, r, n)) exit_w th FAI LURE
A = create_choice(A r);

count _and_exit: — counts and exists if counter reaches zero
if (V == SUCCESS) P->C-;
if (P->C == 0) exit_w th SUCCESS

next _choi ce: — sets the next solution instance to A
if (!has_choice()) exit_with FAl LURE
A = next_choice();

abox_query q: — executes a(compley database query
V = abox_query(A, Qq);

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 16/21

Parallel architecture for DLog

Part Ill: parallel architecture for DLog

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming

Parallelisation possibilities

Fine-grained parallelism
@ Idea: simplify LP parallelisation techniques to DLog programs — PADAM
@ AND parallelism works well with decomposition
@ OR paralellism involves speculative work

Coarse-grained parallelism
@ Idea: introduce parallelism at the DLog architecture-level
@ the superset expression is evaluated in parallel
@ the instances in the superset are checked in parallel

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 18/21

Parallel architecture for DLog

The architecture of the Parallel DLog system.
@

Answer

Superset builder

Transformer l

Dynamic
DAM
programs

Linker
DAM
translator

PADAM
engine
PADAM > PADAM PADAM
engine engine RigftThig

Triple Store l

JO0o

@

DL
translator

Input knowledge base |
Conjuncive query @
Terminology Box (TBox)

Factual triples (ABox)

S
Szeredi (DERI/BUTE) Scalable Reasoning wi

Parallel architecture for DLog

Conclusion

Summary

@ we introduced the Prolog based DLog reasoning system and provided
two extensions to improve its scalability

@ we presented the initial design of the DLog Abstract Machine, including
its architecture, instruction set and operational semantics

@ we outline a new parallel architecture for the DLog system that introduces
parallelism at many levels of the execution

Future work
@ implementation and performance evaluation
@ refinement of the PADAM execution model

@ designing the details of the communication between DLog and the
underlying database/triple store

G. Lukécsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming RR Conference, Chantilly, USA, 2009 20/21

Recent DLog related publications

Gergely Lukacsy, Péter Szeredi.

Efficient description logic reasoning in Prolog: the DLog system.

Theory and Practice of Logic Programming (TPLP). 09(03):343-414, May, 2009.
Cambridge University Press, UK.

Gergely Lukacsy, Péter Szeredi, and Balazs Kadar.

Prolog based description logic reasoning.

In Proceedings of the 24th International Conference on Logic Programming
(ICLP 2008), pp. 455-469, Udine, Italy, December 2008.

Zsolt Zombori

Efficient Two-Phase Data Reasoning for Description Logics.
In Proceedings of the IFIP 20th World Computer Congress

(IFIP Al 2008), pp. 393-402, Milano, Italy, September 2008.

Zsolt Zombori and Gergely Lukacsy.

A resolution based description logic calculus.

In Proceedings of the 22nd International Workshop on Description Logics
(DL 2009), volume 477 of CEUR, Oxford, UK, July 2009.

G. Lukacsy, P. Szeredi (DERI/BUTE) Scalable Reasoning with Logic Programming

	Preliminaries: the DLog framework
	The DLog Abstract Machine
	
	
	

	Parallel architecture for DLog

