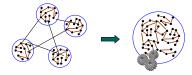
Distributed Resolution for Expressive Ontology Networks

Anne Schlicht, Heiner Stuckenschmidt

UNIVERSITÄT MANNHEIM

October 25, 2009


900

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Problem				

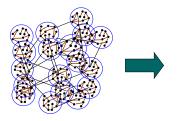
Reasoning on Interlinked Description Logic Ontologies

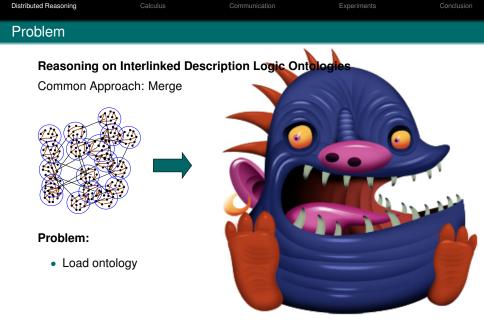
Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Problem				

Reasoning on Interlinked Description Logic Ontologies

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Problem				

Reasoning on Interlinked Description Logic Ontologies




Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Problem				

- 3

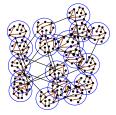
Reasoning on Interlinked Description Logic Ontologies

・ロット (雪) (日) (日)

3

Calculus

Communication


Experiments

Conclusion

Problem

Reasoning on Interlinked Description Logic Ontologies

Common Approach: Merge

Problem:

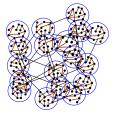
- Load ontology
- Query runtime

・ロット (雪) (日) (日)

ъ

Calculus

Communication


Experiments

Conclusion

Problem

Reasoning on Interlinked Description Logic Ontologies

Common Approach: Merge

Problem:

- Load ontology
- Query runtime

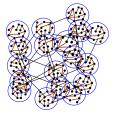
Standard Solution:

• Take advantage of specific structure

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Calculus

Communication


Experiments

Conclusion

Problem

Reasoning on Interlinked Description Logic Ontologies

Common Approach: Merge

Problem:

- Load ontology
- Query runtime

Standard Solution:

- Take advantage of specific structure
- · Use incomplete reasoning methods

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

3

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

• DRAGO (C-OWL)

- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Related Work				

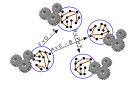
- DRAGO (C-OWL)
- MARVIN (RDF)
- Partition Based Reasoning (FOL)
- Distributed EL (Polynomial DL subset)
- Distributed A-box

Limitations

• Severe limitations on links (no subsumption between ontologies)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- FOL approaches not efficient for DL (FOL is not decidable)
- Limited expressivity
- Restrictions on distribution


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

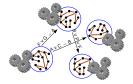
Reasoning on Large DL Ontologies

Idea

Keep ontologies distributed

- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

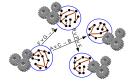
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

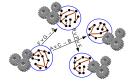
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

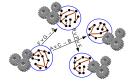
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

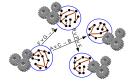
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- · Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

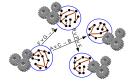
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- · Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

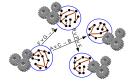
Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- · Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance


Communication

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Reasoning on Large DL Ontologies

Idea

- Keep ontologies distributed
- Distribute computation load across several reasoners
- Every reasoner processes a small local set of axioms
- Axioms are sent to other reasoners if necessary

- · Completeness and termination for expressive DL
- No restriction on link axioms
- No restriction on distribution
- Performance

Calculus

Communication

Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Distributed Resolution Reasoning

Outline

- Local reasoning method
- Communication strategy
- Experiments

Calculus

Communication

Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

Distributed Resolution Reasoning

Outline

- \Rightarrow Local reasoning method
 - Communication strategy
 - Experiments

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Distributed Reasc	nina			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Standard Description Logic Reasoning: Tableaux

- · Extensively investigated and optimized for DL
- No efficient distribution known

- Extensively investigated for first order logic.
- Succesfully applied to DL
- Distributable

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Distributed Reasor	nina			

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Standard Description Logic Reasoning: Tableaux

- · Extensively investigated and optimized for DL
- No efficient distribution known

- Extensively investigated for first order logic.
- Succesfully applied to DL
- Distributable

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Distributed Reaso	nina			

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Standard Description Logic Reasoning: Tableaux

- Extensively investigated and optimized for DL
- No efficient distribution known

- Extensively investigated for first order logic.
- Succesfully applied to DL
- Distributable

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Distributed Reaso	nina			

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Standard Description Logic Reasoning: Tableaux

- · Extensively investigated and optimized for DL
- No efficient distribution known

- Extensively investigated for first order logic.
- Succesfully applied to DL
- Distributable

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Distributed Reasor	nina			

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Standard Description Logic Reasoning: Tableaux

- · Extensively investigated and optimized for DL
- No efficient distribution known

- Extensively investigated for first order logic.
- Succesfully applied to DL
- Distributable

Calculus

Communication

Experiments

Conclusion

Preliminaries: The description logic ALCHIQ

Translating DL Axioms to clauses

$$A \sqsubseteq B \qquad \neg A(x) \lor B(x)$$

- $A \sqsubseteq B \sqcap C$ $\neg A(x) \lor B(x), \ \neg A(x) \lor C(x)$
- $A \sqsubseteq B \sqcup C \qquad \neg A(x) \lor B(x) \lor C(x)$
- $A \sqsubseteq \exists r.B \qquad \neg A(x) \lor r(x, f(x)), \ \neg A(x) \lor B(f(x))$
- $A \sqsubseteq \forall r.B \qquad \neg A(x) \lor \neg r(x,y) \lor B(y)$

$$A \sqsubseteq \exists_{\leq n} r.B \qquad \neg A(x) \lor \neg r(x, y_i) \lor y_i = y_j \lor \neg B(y_i)$$
$$i = 1..n + 1 \quad j = 1..i - 1$$

 $A \sqsubseteq \exists_{\geq n} r.B$

 $\neg A(x) \lor r(x, f_i(x)), \ \neg A(x) \lor f_i(x) \neq f_j(x), \ \neg A(x) \lor B(f_i(x))$ $i = 1..n \quad j = 1..i - 1$

 $r \sqsubseteq s \qquad \neg r(x, y) \lor s(x, y)$

 $r \equiv Inv(s) \qquad \neg r(x,y) \lor s(y,x), \ \neg s(x,y) \lor r(y,x)$

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion			
Preliminaries: T	Preliminaries: The description logic <i>ALCHIQ</i>						
Translating D	L Axioms to cla	auses					
$A \sqsubseteq B$	$\neg A(x) \lor B($	<i>x</i>)					
$A \sqsubseteq B \sqcap C$	$\neg A(x) \lor B($	$x), \ \neg A(x) \lor C(x)$					
$A \sqsubseteq B \sqcup C$	$\neg A(x) \lor B($	$(x) \lor C(x)$					

$$A \sqsubseteq \exists r.B \qquad \neg A(x) \lor r(x, f(x)), \ \neg A(x) \lor B(f(x))$$

$$A \sqsubseteq \forall r.B \qquad \neg A(x) \lor \neg r(x,y) \lor B(y)$$

$$A \sqsubseteq \exists_{\leq n} r.B \qquad \neg A(x) \lor \neg r(x, y_i) \lor y_i = y_j \lor \neg B(y_i)$$

$$\boxed{GlobalCompany \sqsubseteq \exists_{\geq 2} situatedIn.Continent}$$

$$A \sqsubseteq \exists_{\geq n} r.B \qquad \neg A(x) \lor r(x, f_i(x)), \ \neg A(x) \lor f_i(x) \neq f_j(x), \ \neg A(x) \lor B(f_i(x))$$
$$i = 1..n \quad j = 1..i - 1$$

 $r \sqsubseteq s \qquad \neg r(x, y) \lor s(x, y)$

 $r \equiv lnv(s) \qquad \neg r(x,y) \lor s(y,x), \ \neg s(x,y) \lor r(y,x)$

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

Ordered Resolution $\sum_{x \to f(y)} \frac{D(y, f(y)) \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

 $\frac{C(x) \lor f(x) = g(x) \qquad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}$

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

くしゃ 人間 マイボットボット 日 うくの

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

Ordered Resolution $\frac{C(x) \lor A(x) \qquad D(y, f(y)) \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

 $\frac{C(x) \lor f(x) = g(x) \quad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}$

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

くしゃ 人間 そうかく ひゃくしゃ

Ordered Resolution $\frac{C(x) \lor A(x) \qquad D(y, f(y)) \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

 $\frac{C(x) \lor f(x) = g(x) \qquad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}$

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

$$\frac{C(x) \lor A(x)}{C(f(y)) \lor D(y, f(y))} \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

 $\frac{C(x) \lor f(x) = g(x) \qquad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}$

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

$$\frac{C(x) \lor A(x)}{C(f(y)) \lor D(y, f(y))} \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- · Problem: no support for equalities (cardinality restrictions)

```
Basic Superposition (Bachmair et al. 1995)
\frac{C(x) \lor f(x) = g(x) \qquad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}
```

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

くしゃ 人間 そうかく ひゃくしゃ

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

$$\frac{C(x) \lor A(x)}{C(f(y)) \lor D(y, f(y))} \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- · Problem: no support for equalities (cardinality restrictions)

```
Basic Superposition (Bachmair et al. 1995)
\frac{C(x) \lor f(x) = g(x) \qquad D(y, f(y)) \lor P(f(y))}{C(y) \lor D(y, f(y)) \lor P(g(y))}
```

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

くしゃ 人間 そうかく ひゃくしゃ

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

$$\frac{C(x) \lor A(x)}{C(f(y)) \lor D(y, f(y))} \lor \neg A(f(y))}{C(f(y)) \lor D(y, f(y))}$$

- Literals are ordered (based on symbol precedence), unified literals have to be maximal
- Complete and terminates for ALCHI
- Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

$$\frac{C(x) \vee f(x) \to y}{C(y) \vee D(y, f(y)) \vee P(f(y))} \xrightarrow{X \to y} D(y, f(y)) \vee P(f(y))}{D(y) \vee D(y, f(y)) \vee P(g(y))}$$

- Extension of ordered resolution to deal with equalities
- Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

Distributed Reas	soning	Calculus	Communication	Experiments	Conclusion
Resolut	tion				
Bas	ic Superpositi	on			
		Positive superposition ($\frac{C \lor s \approx t) \cdot \rho D \lor (w \approx v) \cdot \rho}{(C \lor D \lor w[t]\rho \approx v) \cdot \theta}$		
where					
1	σ is the most general unifi	ier of $s ho$ and $w ho _p$ and $ heta$ =	$= \rho\sigma$		
2	$t\theta \not\succeq s\theta$ and $v\theta \not\succeq w\theta$				
3	in $(C \lor s \approx t) \cdot \theta$ nothing	ng is selected and ($s \approx t$)	θ is strictly maximal		
4	in $D \lor (w \approx v) \cdot \theta$ noth	ing is selected and ($wpprox$ v) $\cdot \theta$ is strictly maximal		
6	$w _p$ is not a variable.				
6	$s\theta \approx t\theta \not\succeq w\theta \approx v\theta$				
		(Negative superposition	$\frac{(C \lor s \approx t) \cdot \rho D \lor (w \not\approx v) \cdot \rho}{(C \lor D \lor w[t]_{\rho} \not\approx v) \cdot \theta}$		
where					
1	σ is the most general unifi	ier of $s ho$ and $w ho _{p}$ and $ heta$ =	$= \rho\sigma$		
2	$t\theta \not\succeq s\theta$ and $v\theta \not\succeq w\theta$				
3	in $(C \lor s \approx t) \cdot \theta$ nothing	ng is selected and ($s \approx t$)	θ is strictly maximal		
4	$(w \not\approx v) \cdot \theta$ is selected of	or maximal and no other liter	ral is selected in $D \lor (w \not\approx v) \cdot \theta$		
5	$w _{p}$ is not a variable.				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 For all rules with more than one premise, the resolved literals have to be stricly maximal.

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

 $\begin{array}{ll} \neg P(..) & P(..) \\ \neg f(..) = g(..) & f(..) = h(..) \\ \neg P(f(..)) & f(..) = g(..) \end{array}$

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

 $\begin{array}{ll} \neg P(..) & P(..) \\ \neg f(..) = g(..) & f(..) = h(..) \\ \neg P(f(..)) & f(..) = g(..) \\ \neg P(f(g(..))) & g(..) = h(..) \end{array}$

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

$$\begin{array}{c} \neg P(..) & P(..) \\ \neg f(..) = g(..) & f(..) = h(..) \\ \neg P(f(..)) & f(..) = g(..) \\ \hline \neg P(f(g(..))) & g(..) = h(..) \end{array}$$

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Resolution				

• For all rules with more than one premise, the resolved literals have to be stricly maximal.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Strictly maximal equation literals have comparable arguments.
- There are only 3 types of unifications in BS inferences:

```
 \begin{array}{c} \neg P(..) & P(..) \\ \neg f(..) = g(..) & f(..) = h(..) \\ \neg P(f(..)) & f(..) = g(..) \\ \hline \neg P(f(g(..))) & g(..) = h(..) \end{array}
```

 \Rightarrow Communication Strategy Based on Symbol Allocation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Distributed Resolution Reasoning

Outline

- \Rightarrow Local reasoning method
 - Communication strategy
 - Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Distributed Resolution Reasoning

Outline

- · Local reasoning method
- \Rightarrow Communication strategy
 - Experiments

Calculus

Communication

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

Pick the maximal literal of the clause

- Pick the top predicate of that literal
- Output: Allocate the clause to the reasoner that the predicate is allocated to

2b Pick the top function symbol of that literal

3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
C	2
D	1
f	2
g	1

precedence f > g > A > B > C > D

・ロト ・四ト ・ヨト ・ヨト

200

ъ

Example $C(x) \lor D(f(x)) \lor A(x)$ Calculus

Communication

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to

Example

 $C(x) \vee D(f(x)) \vee A(x)$

- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

all	allocation				
	symbol	reasoner			
	A	1			
	В	2			
	С	2			
	D	1			
	f	2			
	g	1			

Calculus

Communication

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to

2b Pick the top function symbol of that literal

3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
C	2
D	1
f	2
g	1
-	

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow \text{reasoner 1}$

Distributed Reasoning

Calculus

Communication

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow \text{reasoner 1}$

2b Pick the top function symbol of that literal

3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
C	2
D	1
f	2
g	1

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to
- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

allocation		
symb	ol reasoner	
A	1	
B	2	
C	2	
D	1	
f	2	
g	1	
1		

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow$ reasoner 1 and 2

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to
- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
С	2
D	1
f	2
g	1

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow$ reasoner 1 and 2 $C(x) \lor f(x) = g(x)$

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to
- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
C	2
D	1
f	2
g	1

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow$ reasoner 1 and 2 $C(x) \lor f(x) = g(x)$

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to
- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
B	2
C	2
D	1
f	2
g	1
-	

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow$ reasoner 1 and 2 $C(x) \lor f(x) = g(x)$

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

- Pick the maximal literal of the clause
- Pick the top predicate of that literal
- Allocate the clause to the reasoner that the predicate is allocated to
- 2b Pick the top function symbol of that literal
- 3b Allocate the clause to the reasoner that the symbol is allocated to

allocation	
symbol	reasoner
A	1
В	2
C	2
D	1
f	2
g	1

precedence f > g > A > B > C > D

Example

 $C(x) \lor D(f(x)) \lor A(x) \rightarrow$ reasoner 1 and 2 $C(x) \lor f(x) = g(x) \rightarrow$ reasoner 2

Distributed Basic Superposition

Calculus: Basic Superposition

· Saturating the local clause set in every reasoner

Communication strategy: Based on maximal literal

- Every reasoner is responsible for a subset of symbols
- · Every input/derived clause is allocated to
 - 1 the reasoner responsible for the top predicate of the literal (if predicate literal)
 - 2 the reasoner responsible for the top function sympbol of the literal (if literal contains function)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Distributed Resolution Reasoning

Outline

- · Local reasoning method
- \Rightarrow Communication strategy
 - Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Distributed Resolution Reasoning

Outline

- Local reasoning method
- Communication strategy
- \Rightarrow Experiments

Implementation

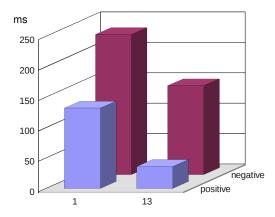
- Based on the first order reasoner SPASS
- Communication via TCP connections (completely connected at startup)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- · Reasoner waits for new clauses when saturated locally
- The system terminates when one reasoner finds a proof or all are saturated
- · Clauses are only send when the destination reasoner is idle

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Experiments				

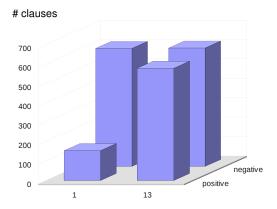
Dataset


- SWEET (Semantic Web for Earth and Environmental Terminology) dataset published by the NASA Jet Propulsion Laboratory
- chemical ontology (chem.owl) and the ontologies that are directly or indirectly imported by chem.
- 13 ontologies liked by 34 import statements.
- The ontology network describes 480 classes and 99 individuals.
- Datatype properties replaced by object properties, nominals replaced by common concepts

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

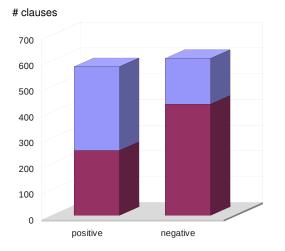
• Expressivity: SHIN

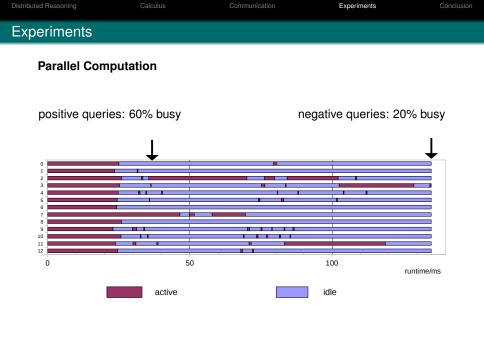
Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Experiments				


Runtime of Positive and Negative Queries

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Experiments				


Number of Derived Clauses



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Experiments				

Number of Propagated Clauses

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Conclusion				

- The approach is complete and terminates for \mathcal{ALCHIQ} ontologies
- No restriction on link axioms
- No strong restriction on distribution
- First experiments show that runtime speedup from parallel computation trades off the communication overhead.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Connection on Demand
- Dynamic Allocation

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Discussion				

Thank You!

Questions?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Allocating Symbols to Reasoners

Straight Forward Allocation

In ontology networks, the ontologies are usually identified by different namespaces

 \Rightarrow Allocation of namespaces to reasoners defines an allocation of symbols.

Dependency Based Allocation

- Create dependency graph from axioms or clauses, each node represents a symbol
- ② Graph partitioning (e.g. minimal edge cut)
- 3 Allocate every part (node set) to a reasoner

Communication Based Allocation

- 1 Allocate every symbol to a different reasoner
- 2 Create dependency graph based on communication
- 3 Graph partitioning, ...

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- A clause is never allocated to more than two reasoners
- Duplication of clauses does not duplicate inferences
- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- · A clause is never allocated to more than two reasoners
- Duplication of clauses does not duplicate inferences
- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- · A clause is never allocated to more than two reasoners
- Duplication of clauses does not duplicate inferences
- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

- (i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)
 - · A clause is never allocated to more than two reasoners
 - · Duplication of clauses does not duplicate inferences

Unavoidable Redundancy

- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- · A clause is never allocated to more than two reasoners
- · Duplication of clauses does not duplicate inferences

Unavoidable Redundancy

- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- · A clause is never allocated to more than two reasoners
- · Duplication of clauses does not duplicate inferences

Unavoidable Redundancy

- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

Distributed Reasoning	Calculus	Communication	Experiments	Conclusion
Redundancy				

The communication strategy occassionally allocates a clause to two different reasoners.

(i.e. clauses with maximal literal P(f(x)) and different allocation of P and f)

- · A clause is never allocated to more than two reasoners
- · Duplication of clauses does not duplicate inferences

Unavoidable Redundancy

- Application of reduction rules is restricted by distributing the clause sets.
- e.g. $a \lor b \lor c$ is redundant if $a \lor b$ given
- if the two clauses are allocated to different reasoners, the redundancy is not detected

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>