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Preliminaries: The description logic ALCHIQ

Translating DL Axioms to clauses

A v B ¬A(x) ∨ B(x)

A v B u C ¬A(x) ∨ B(x), ¬A(x) ∨ C(x)

A v B t C ¬A(x) ∨ B(x) ∨ C(x)

A v ∃r .B ¬A(x) ∨ r(x , f (x)), ¬A(x) ∨ B(f (x))

A v ∀r .B ¬A(x) ∨ ¬r(x , y) ∨ B(y)

A v ∃≤nr .B ¬A(x) ∨ ¬r(x , yi) ∨ yi = yj ∨ ¬B(yi)

i = 1..n+1 j = 1..i−1

A v ∃≥nr .B ¬A(x) ∨ r(x , fi(x)), ¬A(x) ∨ fi(x) 6= fj(x), ¬A(x) ∨ B(fi(x))

i = 1..n j = 1..i−1

r v s ¬r(x , y) ∨ s(x , y)

r ≡ Inv(s) ¬r(x , y) ∨ s(y , x), ¬s(x , y) ∨ r(y , x)
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Resolution

Ordered Resolution

C(x) ∨ A(x) D(y , f (y)) ∨ ¬A(f (y))

C(f (y)) ∨ D(y , f (y))

• Literals are ordered (based on symbol precedence), unified literals have
to be maximal

• Complete and terminates for ALCHI
• Problem: no support for equalities (cardinality restrictions)

Basic Superposition (Bachmair et al. 1995)

C(x) ∨ f (x) = g(x) D(y , f (y)) ∨ P(f (y))

C(y) ∨ D(y , f (y)) ∨ P(g(y))

• Extension of ordered resolution to deal with equalities
• Complete, terminates for expressive DL ALCHIQ (Hustadt et al. 2007)

x → f (y)
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Resolution

Basic Superposition

Positive superposition
(C ∨ s ≈ t) · ρ D ∨ (w ≈ v) · ρ

(C ∨ D ∨ w [t]p ≈ v) · θ

where

1 σ is the most general unifier of sρ and wρ|p and θ = ρσ

2 tθ � sθ and vθ � wθ

3 in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal

4 in D ∨ (w ≈ v) · θ nothing is selected and (w ≈ v) · θ is strictly maximal

5 w|p is not a variable.

6 sθ ≈ tθ � wθ ≈ vθ

Negative superposition
(C ∨ s ≈ t) · ρ D ∨ (w 6≈ v) · ρ

(C ∨ D ∨ w [t]p 6≈ v) · θ

where

1 σ is the most general unifier of sρ and wρ|p and θ = ρσ

2 tθ � sθ and vθ � wθ

3 in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal

4 (w 6≈ v) · θ is selected or maximal and no other literal is selected in D ∨ (w 6≈ v) · θ

5 w|p is not a variable.
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• For all rules with more than one premise, the resolved literals have to be
stricly maximal.

• Strictly maximal equation literals have comparable arguments.
• There are only 3 types of unifications in BS inferences:
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⇒ Communication Strategy Based on Symbol Allocation



Distributed Reasoning Calculus Communication Experiments Conclusion

Distributed Resolution Reasoning

Outline

⇒ Local reasoning method
• Communication strategy
• Experiments



Distributed Reasoning Calculus Communication Experiments Conclusion

Distributed Resolution Reasoning

Outline

• Local reasoning method

⇒ Communication strategy
• Experiments



Distributed Reasoning Calculus Communication Experiments Conclusion

Communication Strategy

Allocation of Clauses to Reasoners

Based on allocation and precedence of symbols

1 Pick the maximal literal of the
clause

2 Pick the top predicate of that
literal

3 Allocate the clause to the
reasoner that the predicate is
allocated to

2b Pick the top function symbol of
that literal

3b Allocate the clause to the
reasoner that the symbol is
allocated to

Example
C(x) ∨ D(f (x)) ∨ A(x)

allocation

symbol reasoner
A 1
B 2
C 2
D 1
f 2
g 1

precedence

f > g > A > B > C > D
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C(x) ∨ D(f (x)) ∨ A(x)→ reasoner 1and 2
C(x) ∨ f (x) = g(x)→ reasoner 2

allocation
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Method

Distributed Basic Superposition

Calculus: Basic Superposition
• Saturating the local clause set in every reasoner

Communication strategy: Based on maximal literal
• Every reasoner is responsible for a subset of symbols
• Every input/derived clause is allocated to

1 the reasoner responsible for the top predicate of the literal
(if predicate literal)

2 the reasoner responsible for the top function sympbol of the literal
(if literal contains function)
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Experiments

Implementation

• Based on the first order reasoner SPASS

• Communication via TCP connections (completely connected at startup)
• Reasoner waits for new clauses when saturated locally
• The system terminates when one reasoner finds a proof or all are

saturated
• Clauses are only send when the destination reasoner is idle
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Experiments

Dataset

• SWEET (Semantic Web for Earth and Environmental Terminology)
dataset published by the NASA Jet Propulsion Laboratory

• chemical ontology (chem.owl) and the ontologies that are directly or
indirectly imported by chem.

• 13 ontologies liked by 34 import statements.
• The ontology network describes 480 classes and 99 individuals.
• Datatype properties replaced by object properties, nominals replaced by

common concepts
• Expressivity: SHIN
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Experiments
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Experiments

Parallel Computation
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Conclusion

Distributed Resolution for DL Ontologies

• The approach is complete and terminates for ALCHIQ ontologies
• No restriction on link axioms
• No strong restriction on distribution
• First experiments show that runtime speedup from parallel computation

trades off the communication overhead.

Next Steps

• Connection on Demand
• Dynamic Allocation
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Discussion

Thank You!

Questions?
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Allocating Symbols to Reasoners

Straight Forward Allocation

In ontology networks, the ontologies are usually identified by different
namespaces
⇒ Allocation of namespaces to reasoners defines an allocation of symbols.

Dependency Based Allocation

1 Create dependency graph from axioms or clauses, each node
represents a symbol

2 Graph partitioning (e.g. minimal edge cut)

3 Allocate every part (node set) to a reasoner

Communication Based Allocation

1 Allocate every symbol to a different reasoner

2 Create dependency graph based on communication

3 Graph partitioning, ...
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Redundancy

Avoiding Redundant Inferences and Clauses

The communication strategy occassionally allocates a clause to two different
reasoners.
(i.e. clauses with maximal literal P(f (x)) and different allocation of P and f )

• A clause is never allocated to more than two reasoners
• Duplication of clauses does not duplicate inferences

• Application of reduction rules is restricted by distributing the clause sets.
• e.g. a ∨ b ∨ c is redundant if a ∨ b given
• if the two clauses are allocated to different reasoners, the redundancy is

not detected
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