Search for More Declarativity

Backward Reasoning for Rule Languages Reconsidered

Simon Brodt François Bry Norbert Eisinger

Institute for Informatics, University of Munich, Oettingenstraße 67, D-80538 München, Germany http://www.pms.ifi.lmu.de/

25 October 2009

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - \Rightarrow Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

- Separates between
 - What is the problem?
 - How is the problem solved?
- Built-in problem-solving
 - ⇒ Allows to concentrate on problem-specification
- Add and modify rules easily
- Supports rapid prototyping and stepwise refinement
- Finding solutions where no explicit algorithm is known
- Adaption to frequently changing prerequisites

An inference engine depends on

- a logical system with reasonable soundness & completeness properties
- a search method which
 - preserves (most of) these properties
 - provides an adequate degree of efficiency

An inference engine depends on

- a logical system with reasonable soundness & completeness properties
- a search method which
 - preserves (most of) these properties
 - provides an adequate degree of efficiency

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
-

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
-

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
-

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

Necessary Design Decisions

- tuple-oriented vs. set-oriented
- forward vs. backward reasoning
- . . .

- Complete and space-efficient search method for rule-engines
- Particularly applicable to
 - Backward reasoning with and without memorization
 - Forward reasoning approaches with some goal guidance

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- •
- •
- •

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening
- •
- 0
- 0

Only uninformed search methods can be used

- Depth-First-Search (D-search)
- Breadth-First-Search (B-search)
- Iterative Deepening
- Iterative Broadening

Only uninformed search methods can be used

Desiderata for Search Methods

Completeness on finite and infinite search trees.

Every node in the search space is visited after a finite number of steps.

```
Polynomial space complexity O(d^c)
c = constant
d = maximum depth reached so far
(or of the entire tree, if it is finite)

Linear time complexity O(n)
n = number of nodes visited at least one (or of the entire tree if it is finite)
```

Desiderata for Search Methods

```
Completeness on finite and infinite search trees.
```

Every node in the search space is visited after a finite number of steps.

```
Polynomial space complexity O(d^c)
```

c = constant

d = maximum depth reached so far
(or of the entire tree, if it is finite)

Linear time complexity O(n)

n = number of nodes visited at least once
(or of the entire tree, if it is finite)

Desiderata for Search Methods

```
Completeness on finite and infinite search trees.
```

Every node in the search space is visited after a finite number of steps.

```
Polynomial space complexity O(d^c)
```

c = constant

d = maximum depth reached so far
(or of the entire tree, if it is finite)

Linear time complexity O(n)

n = number of nodes visited at least once
(or of the entire tree, if it is finite)

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees
Frequent re-evaluation

D-search

Incomplete on infinite trees

B-search

Exponential space-complexity in the depth of the tree

Iterative Deepening

Frequent re-evaluation

Iterative Broadening

Incomplete on infinite trees Frequent re-evaluation

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)

Declarativity gets lost

Rule Languages & Declarativity Rule Languages & Search Desiderata for Search Methods Search & Declarativity

Sensible Compromise? (Prolog)

- Use D-search
- Give rule authors some control to avoid infinite dead ends (e.g. ordering of the rules, ...)

Declarativity gets lost

Search & Declarativity

Term Representation for Natural Numbers

- zero represents 0
- succ(X,Y) can provide the predecessor X to any Y representing a nonzero natural number

Program

Problem 1 – Incomplete Enumerations

Program

```
\begin{array}{lll} \mathtt{nat}(\mathtt{zero}) & \leftarrow \\ \mathtt{nat}(\mathtt{Y}) & \leftarrow & \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{nat}(\mathtt{X}) \\ \mathtt{nat}_2(\mathtt{X},\mathtt{Y}) & \leftarrow & \mathtt{nat}(\mathtt{X}) \ \land \ \mathtt{nat}(\mathtt{Y}) \\ \mathtt{less}(\mathtt{X},\mathtt{Y}) & \leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

- $0 \leftarrow nat(X)$
- $2 \leftarrow nat_2(X,Y)$

Expected Results

- Enumeration of N
- \bigcirc Enumeration of $\mathbb{N} \times \mathbb{N}$

- Enumeration of N
- 2 Enumeration of $\{0\} \times \mathbb{N}$

Problem 1 – Incomplete Enumerations

Program

```
\begin{array}{lll} \mathtt{nat}(\mathtt{zero}) &\leftarrow \\ \mathtt{nat}(\mathtt{Y}) &\leftarrow & \mathtt{succ}(\mathtt{X},\mathtt{Y}) &\wedge & \mathtt{nat}(\mathtt{X}) \\ \mathtt{nat}_2(\mathtt{X},\mathtt{Y}) &\leftarrow & \mathtt{nat}(\mathtt{X}) &\wedge & \mathtt{nat}(\mathtt{Y}) \\ \mathtt{less}(\mathtt{X},\mathtt{Y}) &\leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

- $2 \leftarrow nat_2(X,Y)$

Expected Results

- Enumeration of N
- 2 Enumeration of $\mathbb{N} \times \mathbb{N}$

- Enumeration of N
- 2 Enumeration of $\{0\} \times \mathbb{N}$

Problem 1 – Incomplete Enumerations

Program

```
\begin{array}{lll} \mathtt{nat}(\mathtt{zero}) &\leftarrow \\ \mathtt{nat}(\mathtt{Y}) &\leftarrow & \mathtt{succ}(\mathtt{X},\mathtt{Y}) &\wedge & \mathtt{nat}(\mathtt{X}) \\ \mathtt{nat}_2(\mathtt{X},\mathtt{Y}) &\leftarrow & \mathtt{nat}(\mathtt{X}) &\wedge & \mathtt{nat}(\mathtt{Y}) \\ \mathtt{less}(\mathtt{X},\mathtt{Y}) &\leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

- $2 \leftarrow nat_2(X,Y)$

Expected Results

- Enumeration of N
- 2 Enumeration of $\mathbb{N} \times \mathbb{N}$

- Enumeration of N
- **2** Enumeration of $\{0\} \times \mathbb{N}$

Problem 2 – Non-Commutativity

Program

```
\begin{array}{lll} \mathtt{nat}(\mathtt{zero}) & \leftarrow \\ \mathtt{nat}(\mathtt{Y}) & \leftarrow & \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{nat}(\mathtt{X}) \\ \mathtt{nat}_2(\mathtt{X},\mathtt{Y}) & \leftarrow & \mathtt{nat}(\mathtt{X}) \ \land \ \mathtt{nat}(\mathtt{Y}) \\ \mathtt{less}(\mathtt{X},\mathtt{Y}) & \leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

(Assume Single-Answer-Mode)

- $2 \leftarrow nat_2(X,Y) \land less(zero,X)$

Expected Results

- Yes
- 2 Yes

- Yes
- No answer (does not terminate)

Problem 2 – Non-Commutativity

Program

```
\begin{array}{lll} \mathtt{nat}(\mathtt{zero}) &\leftarrow \\ \mathtt{nat}(\mathtt{Y}) &\leftarrow & \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{nat}(\mathtt{X}) \\ \mathtt{nat}_2(\mathtt{X},\mathtt{Y}) &\leftarrow & \mathtt{nat}(\mathtt{X}) \ \land \ \mathtt{nat}(\mathtt{Y}) \\ \mathtt{less}(\mathtt{X},\mathtt{Y}) &\leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

(Assume Single-Answer-Mode)

- $2 \leftarrow nat_2(X,Y) \land less(zero,X)$

Expected Results

- Yes
- Yes

Prolog's Results

- Yes
- 2 No answer (does not terminate)

Problem 2 – Non-Commutativity

Program

```
\begin{array}{lll} \texttt{nat}(\texttt{zero}) & \leftarrow \\ \texttt{nat}(\texttt{Y}) & \leftarrow & \texttt{succ}(\texttt{X},\texttt{Y}) \ \land \ \texttt{nat}(\texttt{X}) \\ \texttt{nat}_2(\texttt{X},\texttt{Y}) & \leftarrow & \texttt{nat}(\texttt{X}) \ \land \ \texttt{nat}(\texttt{Y}) \\ \texttt{less}(\texttt{X},\texttt{Y}) & \leftarrow & \textit{"reasonably defined"} \end{array}
```

Queries

(Assume Single-Answer-Mode)

- $2 \leftarrow nat_2(X,Y) \land less(zero,X)$

Expected Results

- Yes
- Yes

Prolog's Results

- Yes
- No answer (does not terminate)

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-searchlems would not arise with a complete search method

Choose iterative deepening?

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-search

The problems would not arise with a complete search method

Choose iterative deepening?

Reason – Incomplete Search

SLD-resolution is fine

Perfectly sound and complete with any literal selection function.

Problem: Incompleteness of D-search

The problems would not arise with a complete search method

Choose iterative deepening?

Program

```
\begin{array}{lll} \mathtt{even}(\mathtt{zero}) & \leftarrow \\ \mathtt{even}(\mathtt{Y}) & \leftarrow \ \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{odd}(\mathtt{X}) \\ \mathtt{odd}(\mathtt{Y}) & \leftarrow \ \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{even}(\mathtt{X}) \end{array}
```

Query

```
\leftarrow constant(X) \land even(X)
```

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime

linear, O(n)

Runtime with Iterative-Deepening

Program

Query

```
\leftarrow constant(X) \land even(X)
```

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime

linear, O(n)

Runtime with Iterative-Deepening quadratic $O(n^2)$

Program

Query

```
\leftarrow constant(X) \wedge even(X)
```

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime

linear, O(n)

Runtime with Iterative-Deepening

quadratic, $O(n^2)$

Program

```
\begin{array}{lll} \mathtt{even}(\mathtt{zero}) & \leftarrow \\ \mathtt{even}(\mathtt{Y}) & \leftarrow \ \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{odd}(\mathtt{X}) \\ \mathtt{odd}(\mathtt{Y}) & \leftarrow \ \mathtt{succ}(\mathtt{X},\mathtt{Y}) \ \land \ \mathtt{even}(\mathtt{X}) \end{array}
```

Query

```
\leftarrow constant(X) \land even(X)
```

constant(X) binds X to some fixed, large number $n \in \mathbb{N}$.

Expected Runtime

linear, O(n)

Runtime with Iterative-Deepening

quadratic, $O(n^2)$

A New Algorithm – D&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
 - Complete for c > 0
 - Polynomial space-requirement $O(d^c)$ in depth for $c < \infty$
 - D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

A New Algorithm – D&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
 - Complete for c > 0
 - ullet Polynomial space-requirement $O(d^c)$ in depth for $c<\infty$
 - D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

A New Algorithm – D&B-search

- Integrates D-search and B-search
- Complete on finite and infinite trees
- Linear space complexity in depth for basic algorithm
- Non-repetitive
- Family of algorithms in parameter c with
 - Complete for c > 0
 - Polynomial space-requirement $O(d^c)$ in depth for $c < \infty$
 - D-search and B-search as extreme cases
- Only simple datastructures needed
- Properties are proved

Overview

- D&B-search
- Search & Partial Ordering
- 3 Conclusion

D&B-search

- D&B-search
 - The Basic Algorithm
 - The D&B-Family
- Search & Partial Ordering
- Conclusion

D-search starts

- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- \bullet D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- \bullet D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f_1
- B-search completes level 1
- D-search passes depth bound f₂
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f₂
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound t_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

- D-search starts
- D-search passes depth bound f₀
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if level i has been completed
- B-search completes level i only if depth bound fi has been passe

- D-search starts
- ullet D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if level i has been completed
- B-search completes level i only if depth bound f_i has been passe

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Generally

- D-search passes depth bound f_{i+1} only if level i has been completed
- B-search completes level i only if depth bound f_i has been passed

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if f_i is exponential in i)

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if f_i is exponential in i)

- D-search starts
- D-search passes depth bound f_0
- B-search completes level 0 (no work to do)
- D-search passes depth bound f₁
- B-search completes level 1
- D-search passes depth bound f_2
- B-search completes level 2

Observations

- D-search advances exponentially faster than B-search
- The number of nodes to be stored is only polynomial in the maximum depth (if f_i is exponential in i)

D&B-search - Idea

- Alternate D-search with B-search
- Rotation is controlled by a sequence f_0, f_1, f_2, \ldots of depth bounds
 - Defined by a function $\mathbb{N} \to \mathbb{N}$, $i \mapsto f_i$
 - $i < f_i < f_{i+1}$
 - $f_i = 2^i$ for the examples

- Pivot-node s_i : earliest node at depth f_i
- $Pre-pivot-set S_0$: nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- $Pre-pivot-set S_0$: nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i: nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $\bullet \ X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

- Pivot-node s_i : earliest node at depth f_i
- Pre-pivot-set S_0 : nodes earlier than s_0
- D_i : nodes earlier than s_{i+1}
- B_i : nodes at depth i
- Inter-pivot-set $S_{i+1} = (D_i \cup B_i) \setminus X_i$ is expanded in-between s_i and s_{i+1}
- $X_i = S_0 \cup s_0 \cup \ldots \cup S_i \cup s_i$
- *Post-pivot-set R* : the rest of the nodes

D&B-search – Complete Infinite Tree

- D-search expands all nodes in S_0
- D-search passes s_0
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- \bullet S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S_2 is finished
- D-search passes s_2
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- ullet B-search expands the rest of B_1
- S_2 is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- ullet B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S_1 is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

- D-search expands all nodes in S_0
- D-search passes s₀
- S₁ is finished
- D-search passes s₁
- B-search expands the rest of B_1
- S₂ is finished
- D-search passes s₂
- B-search expands the rest of B_2
- S_3 is finished

Observation

D&B-search expands the nodes in the order

$$S_0, s_0, S_1, s_1, \ldots, S_i, s_i, \ldots, R$$

- S_2 is finished
- D-search expands s_2
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B_2
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S_2 is finished
- D-search expands s_2
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B_2
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S_2 is finished
- D-search expands s_2
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S_2 is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B₂
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

- S₂ is finished
- D-search expands s₂
- D-search reaches the max. depth in R
 (no s₃ in this tree)
- B-search may complete B_2
- D-search continues R
- D-search continues R
- D-search finishes R
- Search is finished

- B-search stops shortly after D-search reaches the max. depth
- Most of the tree is expanded by D-search

- S_1 is finished
- D-search passes s₁
- B-search may complete B_1
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S_1 is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S₁ is finished
- D-search passes s_1
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S_1 is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S_1 is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B_2
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

- S₁ is finished
- D-search passes s₁
- B-search may complete B₁
- D-search finishes S_2
- D-search passes s₂
- B-search completes B₂
- S_3 is finished
- D-search passes s₃
- B-search completes B_3

- D-search "vanishes" in the earliest infinite branch
- Most of the tree is expanded by B-search

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
- ⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
- ⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
- ⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

D&B-Search

- behaves almost like D-search on finite trees
- behaves almost like B-search on infinite trees
- ⇒ has a kind of built-in adaptivity behaves like the "best" uninformed search method for the tree

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$
- Idea: $f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor$
- To get monotonicity: $f_{c,i} := \lfloor b^{\frac{t}{c}} \rfloor + i$

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$
- Idea: $f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor$
- To get monotonicity: $f_{c,i} := \lfloor b^{\frac{1}{c}} \rfloor + i$

Assume that the tree's branching factor is bounded by $b \in \mathbb{N}$

- Parameterise the function f_i with $c \in \mathbb{N} \cup \{\infty\}$
- Idea: $f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor$
- To get monotonicity: $f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$

$$f_{c,i} := \lfloor b^{\frac{i}{c}} \rfloor + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c=0 it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set S_0 contains all nodes of the whole tree
- For $c=\infty$ it corresponds to B-search because $f_{\infty,i}=i+1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1}=B_i \setminus \{s_i\}$

$$f_{c,i} := |b^{\frac{i}{c}}| + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c=0 it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty,i}=i+1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1}=B_i \setminus \{s_i\}$

$$f_{c,i} := |b^{\frac{i}{c}}| + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c=0 it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty,i}=i+1$. All sets $D_i \setminus X_i$ are empty, thus $S_{i+1}=B_i \setminus \{s_i\}$

$$f_{c,i} := |b^{\frac{i}{c}}| + i$$

Properties

- For $1 \le c \le \infty$ the algorithm is complete (for c = 0 it is not)
- For $1 \le c < \infty$ its space complexity is $O(d^c)$
- For c=0 it corresponds to D-search because $f_{0,0}=\infty$. The pre-pivot-set S_0 contains all nodes of the whole tree.
- For $c=\infty$ it corresponds to B-search because $f_{\infty,i}=i+1$. All sets $D_i \backslash X_i$ are empty, thus $S_{i+1}=B_i \backslash \{s_i\}$

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversa

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal

- c expresses how much memory is invested in completeness
- Almost abitrary gradation between the two extremes D-search (c=0) and B-search ($c=\infty$)
- Space complexity polynomial in depth
- Time complexity linear in size
- c can be used as parameter for a single implementation
- c may be adapted even during the traversal

- 1 D&B-search
- Search & Partial Ordering
- 3 Conclusion

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs
 (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

- Transforms problems on search algorithms to problems on partial orderings
- Idea: Nodes ordered by their first occurrence
- Partial orderings are a well-studied field
 - precise notation
 - Powerful instruments for proofs (e.g. the arithmetic for ordinal numbers)
- Powerful characterization of completeness
- Finite and infinte trees are covered uniformly

A search algorithm is complete iff for each depth i there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth i has been expanded.

- $B_i \subseteq S_{i+1} \cup X_i$
- $S_{i+1} \cup X_i$ is completed before s_i , the first node at depth f_{i+1}
- ⇒ D&B-search is complete

A search algorithm is complete iff for each depth i there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth i has been expanded.

- $B_i \subseteq S_{i+1} \cup X_i$
- $S_{i+1} \cup X_i$ is completed before s_i , the first node at depth f_{i+1}
- ⇒ D&B-search is complete

A search algorithm is complete iff for each depth i there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth i has been expanded.

D&B-search

- $B_i \subseteq S_{i+1} \cup X_i$
- $S_{i+1} \cup X_i$ is completed before s_i , the first node at depth f_{i+1}

 $f_{i+1} = f_2 \Rightarrow D\&B$ -search is complete

A search algorithm is complete iff for each depth i there is a depth $f_{i+1} > i$ so that none of the nodes at depth f_{i+1} is expanded before every node at depth i has been expanded.

- $B_i \subseteq S_{i+1} \cup X_i$
 - $S_{i+1} \cup X_i$ is completed before s_i , the first node at depth f_{i+1}
- $f_{i+1} = f_2 \Rightarrow D\&B$ -search is complete

Conclusion

- 1 D&B-search
- Search & Partial Ordering
- 3 Conclusion

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth. Polynomial depends on parameter *c*
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth.
 Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth.
 Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth.
 Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth.
 Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 → only simple datastructures needed

- Novel Search method: Integrating D-search and B-search
- Ratio of D-search and B-search balanced by a parameter
- Family of algorithms in parameter c
 - D-search and B-Search as borderline cases
 - Complete in all non-borderline cases
 - Non-repetitive, i.e. time complexity is linear in size
 - Space complexity is polynomial in depth.
 Polynomial depends on parameter c
- Formal proofs of these properties
- Built-in adaption to the searched tree
- Better than running D-Search and B-Search in parallel
- Implementation in form of detailed pseudo-code
 - → only simple datastructures needed

Theoretical-Framework

- Based on partial orderings
- Covers finite and infinite trees uniformly
- High analytic power, concise and precise proofs

Future work

- Combine D-search and iterative deepening to D&I-search by the same principle
 - Behaves (almost) like D-search on finite trees
 - Behaves (almost) like iterative-deepening on infinite trees
 - ullet Achieved by the same depth bounds f_i as for D&B-search
- Same for other combinations
- Prototype implementation
- Empirical comparison to other uninformed search methods
 - → Focus: Logic programming applications using backward reasoning approaches with and without memorization

Thank You