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Introduction

Research object: Production Systems (PS)

PS consist of a set of rules
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Introduction

Rules (or productions) consist of two parts:

A sensory precondition (or ”IF” statement)
and an action (or ”THEN”).

A production system also contains a initial “database” (WM)
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Introduction

Given a working memory, the rule interpreter applies rules in three
steps:

1 pattern matching,

2 conflict resolution, and

3 rule execution
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The Problem

Rule-based systems are administered and executed in a
distributed environment

Rules are interchanged using standardized rule languages, e.g.
RIF, RuleML, SWRL.

The new system obtained from adding (or removing) the
interchanged rules need to be consistent, and some properties
be preserved, e.g. termination.
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The Goals

Static analysis of such production systems, which means
deciding properties like termination and confluence

We propose using logics and their reasoning techniques from
the area of software specification and verification,

µ-Calculus
Fixed-point logic (FPL)

Provide a logical reconstruction of PS

Denotational semantics for systems where the initial working
memory varies
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Contributions

Embedding of propositional production systems into
µ-calculus and show how this embedding can be used for the
static analysis of production systems.

Embedding of first-order production systems in fixed-point
logic, show how the embedding can be used for reasoning over
the production system, and discuss two decidable cases
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Formalization of Propositional Case

Propositional Production Systems
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Formalization of Propositional Case

A Generic Production System PS : is defined as a tuple

PS = (Prop, L,R)

Where

Prop is a finite set of proposition, representing the set of
potential facts.

L is a set of n rule labels appearing in R .

R is a set of n rules, which are statements of the form

rk : if φk then ψr
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Formalization of Propositional Case

A Generic Production System PS : is defined as a tuple

PS = (Prop, L,R)

rk : if φk then ψr

– ψr = (a1 ∧ · · · ∧ ak ∧ ¬b1 ∧ · · · ∧ ¬bl), where
a1, . . . , ak , b1, . . . , bl are propositions
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Formalization - Definitions

– Definition: Working memory
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Formalization - Definitions

– Definition: Concrete Production System (PS ,WM0)
– Definition: Application of a rule

WM j = WM i ∪ add(rk) \ remove(rk)
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Formalization - Definitions

– Definition: A run WM0 →rk1 WM1 →rkn−1 · · · →rkn WMn . . .
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Formalization - Definitions

A computation tree CT PS
WM0

for a CPS, is a (P ∪ L)− labeled tree
(T,V) where
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

r1 = if
∧

p∈Prop ¬p then o

r2 = if
∧

p∈Prop ¬p then q

r3 = if
∧

p∈Prop ¬p then w

r4 = if
∧

p∈Prop ¬p then z

r5 = if q then z

r6 = if q then w

WM0 = ∅
This production system has six rules, four of them can be fired in
the initial working memory, producing a new working memory:
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

r1 = if
∧

p∈Prop ¬p then o

WM0 →r1 WM1 where WM1 = {o}
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

r2 = if
∧

p∈Prop ¬p then q

WM0 →r2 WM ′
1 where WM ′

1 = {q}
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

r3 = if
∧

p∈Prop ¬p then w

WM0 →r3 WM ′′
1 where WM ′′

1 = {w}
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

r4 = if
∧

p∈Prop ¬p then z

WM0 →r4 WM ′′′
1 where WM ′′′

1 = {z}
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

WM ′
1 = {q}

r5 = if q then z

WM ′
1 →r5 WM2 where WM2 = {q, z}
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Formalization - Example

Prop = {o, q,w , z}

And the rules:

WM ′
1 = {q}

r6 = if q then w

WM ′
1 →r6 WM ′

2 where WM ′
2 = {q,w}
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Formalization - Example

WM0 →r1 WM1 where WM1 = {o}

WM0 →r2 WM ′
1 where WM ′

1 = {q}

WM ′
1 →r5 WM2 where WM ′

2 = {q, z}
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Formalization - Axiomatization

µ-Calculus

µ-calculus encompasses most of the popular logics used in
hardware/software verification: LTL, CTL, CTL* , PDL,. . . ,
and also many logics from other fields like for example
description logics

µ-Calculus extends propositional logic with the modal
operator ♦ and a fix point operator µ

We obtain formulas of the form µ.Z .φ(Z ), where φ(Z ) is a
µ-calculus formula in which the variable Z occurs positively,
i.e., under an even number of negations.

As usual, �φ is short for ¬♦¬φ and ν.Z .φ(Z ) is short for
¬µ.Z .¬φ(¬Z ).
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Formalization - Axiomatization
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Formalization - Axiomatization

φ = P
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Formalization - Axiomatization

φ = ♦P
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Formalization - Axiomatization

φ = �P
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Formalization - Axiomatization

φ = ν.X .(P ∨ Q) ∧�X
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Formalization - Axiomatization
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Formalization - Axiomatization

Root The current state represents the root of the CT.
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Formalization - Axiomatization

RApp Rule application: If rule is applied then the action
holds. In this point we also add some kind of
strategy which is usually required, and it is that if a
rule does not change the working memory, then it
can not be applied.
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Formalization - Axiomatization

Appl If a rule is applied, it must be applicable.
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Formalization - Axiomatization

Frame Frame axiom: if q holds, it holds in the next state
unless q is removed and if ¬q holds, ¬q holds, unless
q is added.
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Formalization - Axiomatization

NoFireable No rule is fireable and there is no successor.
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Formalization - Axiomatization

Fireable At least one rule is fireable and there is a successor.
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Formalization - Axiomatization

Complete If a rule is fireable, it is applied in some successor
states.
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Formalization - Axiomatization

1Rule Exactly one rule is applied.
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Formalization - Axiomatization

WM (Optional) The initial working memory holds.
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Formalization - Axiomatization

Root

RApp

Appl

Frame

NoFireable

Fireable

Complete

1Rule

WM
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Formalization - Axiomatization

Intermediate = RApp ∧ 1Rule ∧ Appl ∧ Frame ∧ Fireable ∧
Complete ∧ ¬b

End = RApp ∧ 1Rule ∧ Frame ∧NoFireable ∧ ¬b
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Formalization - Axiomatization

We now define the µ-calculus formula that captures the production
system PS :

ΦPS = [(Root ∧NoFireable) ∨ (Root ∧ Appl ∧ Frame∧
Complete ∧ Fireable ∧�(ν.X .(Intermediate ∨ End) ∧�X )))]
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Formalization - Bisimulation

A bisimulation between two pointed Kripke structures,
K = ((S ,R,V ), s0) and K ′ = ((S ′,R ′,V ′), t ′0) is a relation
Z ⊆ S × S ′
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Formalization - Theorem

Theorem

Given a Production system PS = (Prop, L,R), a starting working
memory WM0, and the formula ΦPS .

1 A Kripke structure K = (S ,R,V ) is a model of ΦPS iff there
is a working memory WMfor PSsuch that there is an s ∈ S
and (K , s) is bisimilar to (CT PS

WM , 0), and vice versa.

2 A Kripke structure K = (S ,R,V ) is a model of ΦPS ∧WM iff
there is an s ∈ S such that (K , s) is bisimilar to (CT PS

WM0
, 0).
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Formalization - Theorems

Summary

CompTree Kripke//

ProdSys

CompTree
��

ProdSys Axioms// Axioms

Kripke
��
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Formalization - Properties

PE1 All runs are finite (i.e., Termination)

(µ.X .�X )

PE2 All runs terminate with the same working memory
(Confluence)∧

qi∈Prop(µ.X .(� ⊥ ∧qi ) ∨ ♦X )→ (ν.X .(� ⊥→
qi ) ∧�X )
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Formalization - Therorems

Theorem

A property PEi , for i ∈ {1, . . . , 7} holds for a generic production
system PSiff ΦPS entails PEi and PEi holds for a concrete
production system (PS ,WM0) iff WM ∧ ΦPS entails φPEi .

Mart́ın Rezk rezk@inf.unibz.it



Formalization
Axiomatization
First order PS

Conclusion and Future Work
References

Related Work

Formalization - Complexity

Theorem

The properties PE1-7 can be decided in exponential time, both on
generic and concrete production systems.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization of First Order Case

First Order Production Systems
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization of First Order Case

Fixed Point Logics FPL extends standard first order logic with
least fixed-point formulas of the form [µW .~x .ψ(W ,~x)](~x),

In order to obtain the necessary correspondence with the
constants employed in the production system, we assume
standard names.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization of First Order Case

Given a structure M = 〈∆, ·M〉 providing interpretations for all
the free second order variables in ψ, except W , the formula
ψ(W ,~x) defines an operator on k-ary relations W ⊆ AK :

ψM : W 7→ ψM(W ) := {~a ∈ ∆k :M |= ψ(W ,~a)}

Since W occurs only positively in ψ, this operator is monotone and
therefore has a least fixed point LFP(ψM). We then define

M,B |= [µW .~x .ψ(W ,~x)](~x) iff B(~x) ∈ LFP(ψM)

for interpretation M and first-order variable assignment B.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

A Generic FO-Production System is a tuple PS = (τ, L,R), where
– τ = (P,C ) is a first-order signature, with P a set of predicate
symbols, each with an associated nonnegative arity, and C a
nonempty (possibly infinite) set of constant symbols,

r : if φr (~x) then ψr (~x)
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

A Generic FO-Production System is a tuple PS = (τ, L,R), where

r : if φr (~x) then ψr (~x)

– φr is an FO formula with free variables ~x and
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

A Generic FO-Production System is a tuple PS = (τ, L,R), where

r : if φr (~x) then ψr (~x)

– ψr (~x) = (a1 ∧ · · · ∧ ak ∧ ¬b1 ∧ · · · ∧ ¬bl), where
a1, . . . , ak , b1, . . . , bl are atomic formulas with free variables among
~x , such that no ai and bj share the same predicate symbol, each
rule has a distinct label and L ∩ P = ∅.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

The grounding of an FO production system PS = (τ, L,R),
denoted gr(PS), is obtained from PS by replacing each rule

r : if φr (~x) then ψr (~x)

with a set of rules S(r(~x)) : if S(φr (~x)) then S(ψr (~x)), for every
substitution S of variables with constants in C .
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

We first exploit the fact that if the set of constants C is finite, the
grounding gr(PS) is finite, and its size exponential in the size of
PS .

Theorem

Let PS = (τ, L,R)be an FO production system such that R is
quantifier-free and C is finite, and let WMbe a working memory.a

Then, the properties PE1-7 can be decided in double exponential
time, on both PSand (PS ,WM).

aNote that if C is finite, the existential quantifier could be replaced with a
disjunction of all possible ground variable substitutions; analogous for universal
quantifier. In this case, the grounding would be double exponential.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

When considering concrete FO production systems, we can also
exploit grounding, provided the conditions in the rules are
domain-independent

If all conditions are domain-independent and the initial
working memory WM0is given, one only needs to consider
grounding with the constants appearing in (PS ,WM0).
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - FO

Theorem

Let PS = (τ, L,R)be an FO production system such that R is
quantifier-free and for every rule r ∈ R holds that φr (~x) is
domain-independent, and let WMbe a working memory. Then, the
properties PE1-7 can be decided in double exponential time, on
(PS ,WM).
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - Axioms

First Order Axiomatization

We capture the structure of the computation tree using the
binary predicate R, and a set of foundational axioms.
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - Axioms

First Order Axiomatization

We capture the structure of the computation tree using the
binary predicate R, and a set of foundational axioms.

And we divide the domain into two parts: the nodes of the
tree, i.e., the states (A), and the objects in the working
memories (U).
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Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - Axioms

First Order Axiomatization

We capture the structure of the computation tree using the
binary predicate R, and a set of foundational axioms.
The arity of the predicates in P ∪ L is increased by one, and
the first argument of each predicates will signify the state;
p(y , x1, . . . , xn) intuitively means that p(x1, . . . , xn) holds in
state y .

Mart́ın Rezk rezk@inf.unibz.it



Formalization
Axiomatization
First order PS

Conclusion and Future Work
References

Related Work

Grounding FO Production Systems
Axiomatizing FO Production Systems

Formalization - Axioms

Foundational axioms:

Structure Partitioning of the domain.

Tree The predicate R encodes a tree.

We denote the set of foundational axioms with
Σfound = {Structure,Tree}.
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Formalization - Axioms

We extend the previous set of axioms to the first order case. The
most relevant changes are:

Complete If a rule is fireable, it is applied once.

Only A rule can not be applied twice in the same state.
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Formalization - Axioms

Intermediate = RApp ∧ 1Rule ∧Only ∧ Appl ∧ Frame ∧
Fireable ∧ Complete ∧ ¬B(y)

End = RApp∧1Rule∧Only∧Frame∧NoFireable∧¬B(y)

Analogous to the propositional case, we defined a formula that
captures the behavior of PS :

ΦPS = (∃y : (Root ∧NoFireable) ∨ (Root ∧ Appl ∧ Complete

∧ Fireable∧
∀w(R(y ,w)→ (ν.X .y .(Intermediate

∨ End) ∧ ∀w(R(y ,w)→ X (w)))(w))))
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Formalization - Axioms

Theorem

Given an FO production system PS = (τ, L,R), a starting working
memory WM0, and the formula ΦPS ,

1 a model M of Σfound is a model of ΦPS iff there is a working
memory WMfor PS s.t. M is isomorphic to CT PS

WM , and

2 a model M of Σfound is a model of ΦPS ∧WM iff M is
isomorphic to CT PS

WM0
.
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Formalization - Axioms

Theorem

The satisfiability problem for φPS under Σfound is undecidable.
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Conclusion

We presented an embedding of P-PS into µ-calculus, and
FO-PS into fixed-point logic

We exploited the fixpoint operator in both logics to encode
properties of the system over time

One of the advantages of our encodings is the strong
correspondence between the structure of the models and the
runs of the production systems

We have illustrated the versatility of our approach
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Future Work

We plan to extend both P-PS and FO-PS case with additional
conflict resolution strategies, e.g., based on rule priorities.

We plan to extend the first-order case with object invention,
i.e., the rules may assert information about new (anonymous)
objects

We plan to look for new decidable fragments of our first-order
encoding

We plan to investigate the combination of production systems
with languages for describing background knowledge, in the
form of description logic ontologies.
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Mart́ın Rezk rezk@inf.unibz.it



Formalization
Axiomatization
First order PS

Conclusion and Future Work
References

Related Work

Thx

Thanks!

Mart́ın Rezk rezk@inf.unibz.it



Formalization
Axiomatization
First order PS

Conclusion and Future Work
References

Related Work

Related Work

We consider two streams of related work:

action languages and planning and

rules in active databases.
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Related Work

Situation Calculus (John McCarthy and Patrick Hayes 1969):
A distinguishing feature between situation calculus and the
logics used here, is the notion of situation and the notion of
state

In (Chitta Baral and Jorge Lobo ), they use logic programs
with the stable model semantics and situation calculus
notation for characterizing production systems
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Situation Calculus (John McCarthy and Patrick Hayes 1969):
A distinguishing feature between situation calculus and the
logics used here, is the notion of situation and the notion of
state

Arguably, the latter are conceptually a better match with the
notion of working memory in production systems
They provide a methodology for solving the frame problem,
not the frame axioms
Adding the axioms to the system entails re-coding the entire
frame problem in non-incremental ways

In (Chitta Baral and Jorge Lobo ), they use logic programs
with the stable model semantics and situation calculus
notation for characterizing production systems
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Situation Calculus (John McCarthy and Patrick Hayes 1969):
A distinguishing feature between situation calculus and the
logics used here, is the notion of situation and the notion of
state

In (Chitta Baral and Jorge Lobo ), they use logic programs
with the stable model semantics and situation calculus
notation for characterizing production systems

They check termination given one especific working memory
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Planning - STRIPS

Robert Mattmller and Jussi Rintanen (2007) address the
propositional case with LTL. The main problem in trying to
apply these works to PS, is that in the planning problem, they
need to find one sequence

We present properties which can not be expressed in LTL

On the other hand, if we consider the operators as the PS’s
rules, the present work can be used to solve to planning
problem
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De Giacomo Giuseppe and Lenzerini Maurizio (1995) present
a new logic ( DIFR) which is an extension of PDL that can
encode propositional situation calculus.

They present a formal framework for modeling, and reasoning
about actions. Consequently, each particular problem has to
be modeled ad-hoc.
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In the present work we model not just the conditions and
effect of an action, but several specific features of Production
systems like strategies, constrains, and the behavior of the
system in time.

We provide an axiomatization of PS, and a formal proof of
the correspondence with the set of runs of a PS, and the
models of our axiomatization. This link is required to do
formal verification of properties of PS, using the models of the
axiomatization.
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The choice of µ-calculus over DIFR for modeling has been based
on two points:

First, certain properties of interest, like finiteness of runs
(among others), cannot be expressed in DIFR, while they
can be expressed in µ-calculus

Second, we extend the propositional case, and we model PS
with variables, First Order Production Systems (FO-PS) using
FPL. The choice of µ-calculus makes the path from the
propositional PS to FO-PS more understandable.
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Rules in active databases are strongly related to production rules

The works of (A. Aiken et all 1995; Baralis E. and Ceri S. and
Paraboschi S. 1998; Elena Baralis et all 2000) are based on
checking properties of graphs

The general problem, where conditions are arbitrary SQL
queries, is (unsurprisingly) known to be undecidable

Elena Baralis et all (2000) study sufficient conditions for
deciding termination and confluence. In contrast, our
embeddings in µ-calculus and FPL are used to find sufficient
and necessary conditions for deciding these and other
properties for classes of production systems.
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Some philosophical problems from the standpoint of artificial
intelligence

Characterizing Production Systems using Logic Programming
and Situation Calculus

Static analysis techniques for predicting the behavior of active
database rules

An Algebraic Approach to Static Analysis of Active Database
Rules

Planning for temporally extended goals as propositional
satisfiability

PDL-based framework for reasoning about actions

Compile-Time and Runtime Analysis of Active Behaviors
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