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Introduction
I Interest in Semantic Web technologies grows
I RDF/S is both a logic and standard W3C Semantic Web

Languages
I Crisp RDF isn’t the best choice to represent vague information

“ISWC-09 is held near Washington D.C”
(source: ISWC 2009 Web page)

I the sentence should be true to some degree depending,
e.g., on the distance and context



ISWC-09 is held near Washington D.C
(source: ISWC 2009 Web page)

I Fuzzy RDF variants are emerging . . .
I In this work we provide,

I A very general semantics for Fuzzy RDF
I A deductive system for a salient fragment of fuzzy RDF
I We show how to compute top-k answers of the union of

conjunctive queries in which answers may be scored by
means of a scoring function

I Crisp RDF is a special case (backward compatibility is
guaranteed)

I Implementation is simple
I Computational complexity and scalability is as for crisp RDF



Outline

I Crash course on Fuzzy Sets & Mathematical Fuzzy Logic
I Fuzzy RDF
I Query answering
I Hints for implmentors
I Summary & Outlook



Preliminaries: Fuzzy Sets [Zad65]

I A fuzzy set R is a function R : X → [0, 1]

I A fuzzy set A is included in B (denoted A ⊆ B) iff ∀x ∈ X ,A(x) 6 B(x)

I The degree of subsumption between A and B is infx∈X A(x)⇒ B(x)

I A (binary) fuzzy relation R over sets X and Y is R : X × Y → [0, 1]

I The composition of R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] is
(R1 ◦ R2)(x , z) = supy∈Y R1(x , y)⊗ R2(y , z)

I A fuzzy relation R is reflexive iff ∀x ∈ X ,R(x , x) = 1
I R is symmetric iff ∀x ∈ X , y ∈ Y ,R(x , y) = R(y , x)

I R is transitive iff R(x , z) > (R ◦ R)(x , z)

I ⊗,⇒ is t-norm and r-implication (next slide ...)



Preliminaries: Mathematical Fuzzy Logic [Háj98]

I Fuzzy statements: φ[n], where n∈ [0, 1] and φ is a FOL statement

I The degree of truth of φ is at least n
I Fuzzy interpretation: I : Atoms → [0, 1] and is then extended

inductively:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) I(φ ∨ ψ) = I(φ)⊕ I(ψ),
I(φ→ ψ) = I(φ)⇒ I(ψ) I(¬φ) = 	I(φ) ,
I(∃x .φ(x)) = supc∈∆I I(φ(c)) I(∀x .φ(x)) = infc∈∆I I(φ(c))

⊗, ⊕,⇒, and 	 are truth combination functions

Łukasiewicz Logic Gödel Logic Product Logic “Zadeh Logic”
a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a⇒ b min(1− a + b, 1)

(
1 if a 6 b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0
0 otherwise

(
1 if a = 0
0 otherwise

1− a

I Satisfiability: I |= φ[n] iff I(φ) > n
I Best Entailment Degree (BED): bed(KB, φ) = sup {r |KB |=φ[r ]}



From RDF to Fuzzy RDF



RDF Syntax

I Pairwise disjoint alphabets
I U (RDF URI references)
I B (Blank nodes)
I L (Literals)

I For simplicity we will denote unions of these sets simply
concatenating their names

I We call elements in UBL terms (denoted t)
I We call elements in B variables (denoted x)



I RDF triple (or RDF atom):

(s,p,o) ∈ UBL× U× UBL

I s is the subject
I p is the predicate
I o is the object

I Example:
(airplane,has,enginefault)



ρdf (restricted RDF) [MPG07]

I ρdf (read rho-df, the ρ from restricted rdf)
I ρdf is defined as the following subset of the RDFS

vocabulary:

ρdf = {sp, sc, type,dom, range}

I (p, sp,q)
I property p is a sub property of property q

I (c, sc,d)
I class c is a sub class of class d

I (a, type,b)
I a is of type b

I (p,dom, c)
I domain of property p is c

I (p, range, c)
I range of property p is c



I RDF graph (or simply a graph, or RDF Knowledge Base) is
a set of RDF triples τ

I A subgraph is a subset of a graph
I The universe of a graph G, denoted by universe(G) is the

set of elements in UBL that occur in the triples of G
I The vocabulary of G, denoted by voc(G) is the set

universe(G) ∩ UL
I A graph is ground if it has no blank nodes (i.e. variables)



I A variable assignment: a function µ : UBL→ UBL
preserving URIs and literals, i.e.,

I µ(t) = t , for all t ∈ UL
I Given a graph G, we define

µ(G) = {(µ(s), µ(p), µ(o)) | (s,p,o) ∈ G}

I We speak of a variable assignment µ from G1 to G2, and
write µ : G1 → G2, if µ is such that µ(G1) ⊆ G2



Fuzzy RDF

I Statement (triples) may have attached a degree in [0,1]:
for n ∈ [0,1]

(s,p,o)[n]

I Meaning: the degree of truth of the statement is at least n
I For instance,

(ISWC09,near ,WashingtonDC)[0.8]



Fuzzy RDF Syntax

I Fuzzy RDF triple (or Fuzzy RDF atom):

τ [n] ∈ (UBL× U× UBL)× [0,1]

I s ∈ UBL is the subject
I p ∈ U is the predicate
I o ∈ UBL is the object
I n ∈ (0,1] is the degree of truth

I Example:
(audiTT, type,SportCar)[0.8]

I Degree n may be omitted and in that case degree 1 is
assumed



Fuzzy RDF Semantics

I Semantics generalizes that of crisp RDF
I Fuzzy RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉 ,

where
I ∆R ,∆P ,∆C ,∆L are the interpretations domains of I
I P[[·]],C[[·]], ·I are the interpretation functions of I



I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉

Common parts between Crisp RDF and Fuzzy RDF

1. ∆R is a nonempty set of resources, called the domain or universe of I
2. ∆P is a set of property names (not necessarily disjoint from ∆R)

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource
denotes a class of resources

4. ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V

5. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a
resource or a property name to each element of UL in V , and such that
·I is the identity for plain literals and assigns an element in ∆R to
elements in L

6. ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a
resource to each variable in B

7. What are P[[·]] and C[[·]] ?



Crisp P[[·]] : P[[·]] maps each property name p ∈ ∆P into a subset
P[[p]] ⊆ ∆R ×∆R , i.e. assigns an extension to each
property name; i.e.

P[[p]] : ∆R ×∆R → {0,1}

Fuzzy P[[·]] : P[[·]] maps each property name p ∈ ∆P into a partial
function P[[p]] : ∆R ×∆R → [0,1], i.e. assigns a degree
to each pair of resources, denoting the degree of being
the pair an instance of the property p;

Crisp C[[·]] : C[[·]] maps each class c ∈ ∆C into a subset
C[[c]] ⊆ ∆R , i.e. assigns a set of resources to every
resource denoting a class; i.e.

C[[c]] : ∆R → {0,1}

Fuzzy C[[·]] : C[[·]] maps each class c ∈ ∆C into a partial function
C[[c]] : ∆R → [0,1], i.e. assigns a degree to every
resource, denoting the degree of being the resource an
instance of the class c
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Models (Intuitively)

Crisp RDF : For ground triples, I |= (s,p,o) if
I p is interpreted as a property name
I s and o are interpreted as resources
I the interpretation of the pair (s,o) belongs to

the extension of the property assigned to p
Fuzzy RDF : For ground triples, I |= (s,p,o)[n] if

I p is interpreted as a property name
I s and o are interpreted as resources
I the interpretation of the pair (s,o) belongs to

the extension of the property assigned to p to
degree not less than n



Models (Intuitively)

Crisp RDF : For ground triples, I |= (s,p,o) if
I p is interpreted as a property name
I s and o are interpreted as resources
I the interpretation of the pair (s,o) belongs to

the extension of the property assigned to p
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I p is interpreted as a property name
I s and o are interpreted as resources
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the extension of the property assigned to p to
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Models

Let G be a graph over ρdf.
I An interpretation I is a model of G under ρdf, denoted
I |= G, iff

I I is an interpretation over the vocabulary ρdf ∪ universe(G)
I I satisfies the following conditions:



Crisp Simple:

1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P[[pI ]];

Fuzzy Simple:

1. for each (s, p, o)[n] ∈ G, pI ∈ ∆P and
P[[pI ]](sI , oI) > n;

Crisp Subclass:

1. P[[scI ]] is transitive over ∆C ;
2. if (c, d) ∈ P[[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d ]];

Fuzzy Subclass:

1. P[[scI ]] is transitive over ∆C ;
2. if P[[scI ]](c, d) is defined then c, d ∈ ∆C and

P[[scI ]](c, d) = inf
x∈∆R

C[[c]](x)⇒ C[[d ]](x) ;

Corresponds to compute the degree of
subsumption among classes
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Crisp Typing I:

1. x ∈ C[[c]] iff (x , c) ∈ P[[typeI ]];
2. if (p, c) ∈ P[[domI ]] and (x , y) ∈ P[[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P[[rangeI ]] and (x , y) ∈ P[[p]] then y ∈ C[[c]];

Fuzzy Typing I:

1. C[[c]](x) = P[[typeI ]](x , c);
2. if P[[domI ]](p, c) is defined then

P[[domI ]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y)⇒ C[[c]](x) ;

3. if P[[rangeI ]](p, c) is defined then

P[[rangeI ]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y)⇒ C[[c]](y) ;



Crisp Typing I:

1. x ∈ C[[c]] iff (x , c) ∈ P[[typeI ]];
2. if (p, c) ∈ P[[domI ]] and (x , y) ∈ P[[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P[[rangeI ]] and (x , y) ∈ P[[p]] then y ∈ C[[c]];

Fuzzy Typing I:

1. C[[c]](x) = P[[typeI ]](x , c);
2. if P[[domI ]](p, c) is defined then

P[[domI ]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y)⇒ C[[c]](x) ;

3. if P[[rangeI ]](p, c) is defined then

P[[rangeI ]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y)⇒ C[[c]](y) ;



Crisp Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. if (p, c) ∈ P[[domI ]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P[[rangeI ]] then p ∈ ∆P and c ∈ ∆C

4. if (x , c) ∈ P[[typeI ]] then c ∈ ∆C

Fuzzy Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. if P[[domI ]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

3. if P[[rangeI ]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

4. if P[[typeI ]](x , c) is defined then c ∈ ∆C



Crisp Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. if (p, c) ∈ P[[domI ]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P[[rangeI ]] then p ∈ ∆P and c ∈ ∆C

4. if (x , c) ∈ P[[typeI ]] then c ∈ ∆C

Fuzzy Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. if P[[domI ]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

3. if P[[rangeI ]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

4. if P[[typeI ]](x , c) is defined then c ∈ ∆C



Models (cont.)
I In the crisp case, if c is a sub-class of d then we impose that C[[c]] ⊆ C[[d ]]

I This may be seen as the formula

∀x .c(x)⇒ d(x) ,

I The fuzzyfication is

P[[scI ]](c, d) = inf
x∈∆R

C[[c]](x)⇒ C[[d ]](x) ;

I Similarly, e.g., “property p has domain c” may be seen as the formula

∀x∀y .p(x , y)⇒ c(x) ,

I The fuzzyfication is

P[[domI ]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y)⇒ C[[c]](x) .

I G entails H under ρdf, denoted G |= H, iff
I every model under ρdf of G is also a model under ρdf of H

Proposition (Consistency)
Like crisp RDF, any fuzzy RDF graph has a model.



Deduction System for Fuzzy RDF

I The system is arranged in groups of rules that captures the
semantic conditions of models

I In every rule, A,B,C,X , and Y are meta-variables
representing elements in UBL

I An instantiation of a rule is a uniform replacement of the
metavariables occurring in the triples of the rule by
elements of UBL, such that all the triples obtained after the
replacement are well formed



Deduction System for fuzzy RDF

1. Crisp/Fuzzy Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

2. Crisp Subproperty:

(a)
(A,sp,B),(B,sp,C)

(A,sp,C)
(b)

(A,sp,B),(X,A,Y )
(X,B,Y )

3. Fuzzy Subproperty:

(a)
(A, sp, B)[n],(B, sp,C)[m]

(A, sp,C)[n ⊗ m]
(b)

(A, sp, B)[n],(X , A, Y )[m]
(X , B, Y )[n ⊗ m]
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(a)
(A,dom,B),(X,A,Y )

(X,type,B)
(b)

(A,range,B),(X,A,Y )
(Y ,type,B)

4. Fuzzy Typing:

(a)
(A, dom, B)[n],(X , A, Y )[m]

(X , type, B)[n ⊗ m]
(b)

(A, range, B)[n],(X , A, Y )[m]
(Y , type, B)[n ⊗ m]



1. Crisp Implicit Typing:

(a)
(A,dom,B),(C,sp,A),(X,C,Y )

(X,type,B)
(b)

(A,range,B),(C,sp,A),(X,C,Y )
(Y ,type,B)

2. Fuzzy Implicit Typing:

(a)
(A, dom, B)[n],(C, sp, A)[m],(X ,C, Y )[r ]

(X , type, B)[n ⊗ m ⊗ r ]

(b)
(A, range, B)[n],(C, sp, A)[m],(X ,C, Y )[r ]

(Y , type, B)[n ⊗ m ⊗ r ]



Deduction System for Fuzzy RDF (cont.)

I Notion of proof (as for crisp RDF)):
I Let G and H be graphs
I Then G ` H iff there is a sequence of graphs P1, . . . ,Pk

with P1 = G and Pk = H, and for each j (2 6 j 6 k ) one of
the following holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));
2. Pj ⊆ Pj−1 (rule (1b));
3. there is an instantiation R

R′ of one of the rules (2)–(5), such
that R ⊆ Pj−1 and Pj = Pj−1 ∪ R′.

I The sequence of rules used at each step (plus its
instantiation or map), is called a proof of H from G.

Proposition (Soundness and completeness)
The fuzzy RDF proof system ` is sound and complete for |=,
that is, G ` H iff G |= H.



Example (Proof)

G = {(audiTT , type, SportsCar)[0.8], (SportsCar, sc, PassengerCar)[0.9]} t-norm: Product

Let us proof that
G |= (audiTT , type, PassengerCar)[0.72]

G ` (audiTT , type, SportsCar)[0.8], (1) Rule Simple (b)
G ` (SportsCar, sc, PassengerCar)[0.9] (2) Rule Simple (b)
G ` (audiTT , type, PassengerCar)[0.72] (3) Rule SubClass (b) applied to (1) + (2) using product t-norm



Fuzzy RDF Query Answering
I We assume that a fuzzy RDF graph G is ground and closed, i.e., G is closed under rule application
I Query example: “find cheap sports cars”

q(x)[s]← (x, type, SportCar)[s1], (x, hasPrice, y), s = s1 · cheap(y)

where e.g. cheap(p) = ls(30000, 50000)(p) ba
0

1

x
I Conjunctive query: extends a crisp RDF query and is of the form

q(x)[s]← ∃y.τ1[s1], . . . , τn [sn ], s = f (s1, . . . , sn, p1(z1), . . . , ph(zh))

where additionally
I zi are tuples of terms in UL or variables in x or y;
I pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple tj in UL a score pj (tj ) ∈ [0, 1]m . Such

predicates are called expensive predicates as the score is not pre-computed off-line, but is
computed on query execution. We require that an n-ary fuzzy predicate p is safe, that is, there is
not an m-ary fuzzy predicate p′ such that m < n and p = p′. Informally, all parameters are
needed in the definition of p;

I f is a scoring function f : ([0, 1])n+h → [0, 1], which combines the scores si of the n triples and
the h fuzzy predicates into an overall score to be assigned to the rule head. We assume that f is
monotone, that is, for each v, v′ ∈ ([0, 1])n+h such that v 6 v′, it holds f (v) 6 f (v′), where
(v1, . . . , vn+h) 6 (v′1, . . . , v′n+h) iff vi 6 v′i for all i ;

I the scoring variables s and si are distinct from those in x and y and s is distinct from each si
I If clear from the context, we may omit the exitential quantification ∃y
I We may omit si and in that case si = 1 is assumed
I s = f (s1, . . . , sn, p1(z1), . . . , ph(zh)) is called the scoring atom. We may also omit the scoring atom and

in that case s = 1 is assumed.



Fuzzy RDF Query Answering (cont.)

I We will also write a query as
q(x)[s]← ∃y.ϕ(x, y)[s] ,

where
I ϕ(x, y) is τ1[s1], . . . , τn [sn ], s = f (s, p1(z1), . . . , ph(zh))

I s = 〈s1, . . . , sn〉
I Furthermore, q(x) is called the head of the query, while ∃y.ϕ(x, y) is is called the body of the query

I Finally, a disjunctive query (or, union of conjunctive queries) q is, as usual, a finite set of conjunctive queries
in which all the rules have the same head

I For instance, the disjunctive query

q(x)[s] ← (x, type, SportCar)[s1], (x, hasPrice, y), s = s1 · cheap(y)

q(x)[s] ← (x, type, PassengerCar)[s1], s = s1

has intended meaning to retrieve all sports cars or passenger cars



Fuzzy RDF Query Answering (cont.)
I Consider a fuzzy graph G, a query q(x)[s]← ∃y.ϕ(x, y)[s], and a vector t of

terms in UL and s ∈ [0, 1]

I We say that q(t)[s] is entailed by G, denoted G |= q(t)[s], iff

I in any model I of G, there is a vector t′ of terms in UL, a vector s of scores
in [0, 1] such that I is a model of ϕ(t, t′)[s] (the scoring atom is satisfied iff
s is the value of the evaluation of the score combination function)

I For a disjunctive query q = {q1, . . . , qm}, we say that q(t)[s] is entailed by G,
denoted G |= q(t)[s], iff G |= qi (t)[s] for some qi ∈ q

I We say that s is tight iff s = sup{s′ | G |= q(t)[s′]}
I If G |= q(t)[s] and s is tight then t[s] is called an answer to q
I The answer set of q w.r.t. G is defined as

ans(G,q) = {t[s] | G |= q(t)[s], s is tight}

Top-k Retrieval: Given a fuzzy graph G, and a disjunctive query q, retrieve k answers
t[s] with maximal scores and rank them in decreasing order relative
to the score s, denoted

ansk (G,q) = Topk ans(G,q) .



Fuzzy RDF Query Answering (cont.)

I A simple query answering procedure is the following:
I Represent fuzzy triples as reified RDF triples
I Compute the closure of a graph off-line
I Store the fuzzy RDF triples into a relational database

supporting Top-k retrieval (e.g., RankSQL, Postgres)
I Translate the fuzzy query into a top-k SQL statement
I Execute the SQL statement over the relational database

I System has been implemented:
I Using Java, Jena, TDB, MonetDB (each property is a table)

I Alternative implementation based on Logic Programming
on the way

I SWI-Prolog (XSB may work as well)
I Top-k retrieval may be an issue . . .



Example:
RDF-based Multimedia Information Retrieval (based on [MSS01])

G =

8>>><>>>:
(o1, IsAbout , snoopy)[0.8] (o2, IsAbout ,woodstock)[0.9]
(snoopy , type, dog) (woodstock , type, bird)
(Bird , sc,SmallAnimal)[0.7] (Dog, sc,SmallAnimal)[0.4]
(dog, sc,Animal) (bird , sc,Animal)
(SmallAnimal, sc,Animal)

9>>>=>>>;
Consider the query

q(x)[s] ← (x , IsAbout , y)[s1], (y , type,SmallAnimal)[s2], s = s1 · s2

Then (under any t-norm)

ans(G, q) = {o1[0.32], o2[0.63]}, ans1(G, q) = {o2[0.63]}



Summary & Outlook
I We have presented Fuzzy RDF:

I Conservative extension of RDF
I Deductive system generalizes crisp RDF
I Conservative extension of conjunctive query answering
I Implementation relatively easy (prototype already available)

I Future issues:
I Conservative extension of SPARQL to fuzzy case

I SPARQL can already query fuzzy RDF data via reification,
but not elegant at all . . .

I Generalize Fuzzy RDF to arbitrary truth spaces
I Allows to deal with temporal extensions, trustiness,

confidence values, etc.

Questions ? Ask him . . .
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